過去有關電漿驅動器之研究多著重於電極表面之空氣動力特性,尚未針對電漿驅動器於運作時產生之臭氧濃度做探討,本研究利用電漿驅動器在不同參數下產生之臭氧濃度做深入之了解,討論操作參數改變對於臭氧濃度所造成之影響。並以數值模式模擬不同之操作參數產生之臭氧濃度,找出電漿驅動器中控制臭氧濃度之重要因子,以期充分掌握電漿驅動器之臭氧生成特性。 由本研究結果得知,以純氧為工作氣體時臭氧濃度會是以空氣為工作氣體時之2.5倍;而放電功率、施加電壓與供電頻率之上升皆會使臭氧濃度上升;驅動器之幾何外形(如:電極構造、電極長度)亦會造成臭氧濃度明顯之改變;折合電場在約160 Td時臭氧濃度為最高值,不管折合電場增加或減少臭氧濃度皆會下降;溫度效應則是當溫度越高時,臭氧濃度會越低。 由最適化條件來看,在兼顧電漿驅動器效能與臭氧濃度之參數為介電質為KaptonR,頻率為1 kHz,施加電壓為16 kV,電極長度為80 mm,電極構造為6-3-6,所生成之臭氧濃度為119 ppm。 能源效率之計算結果顯示當頻率上升時,能源效率會有下降之趨勢,而又以施加電壓為19kV時下降趨勢最為明顯,且電漿驅動器之能源效率在同型反應器中為最小值,亦即在實際應用時會生成最少之臭氧,可降低對環境之危害。In recent years, several studies have focused on the actuator changed the effect of aerodynamic characteristics, but without any research focused on ozone formation that plasma actuator generated. This study is focused on the characteristics of ozone formation with DBD plasma actuator and investigated with experimental tests and numerical model. Experimental results indicate that discharge power, frequency, electrode configuration, dielectric and applied voltage would affect ozone formation significantly. Numerical results show that discharge power, reduced field and temperature are factors affecting ozone formation with plasma actuator. In this study also conduct the energy efficiency of plasma actuator, it shows that plasma actuator has the minimum energy efficiency compared with the same type reactors.