中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/5491
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42717746      Online Users : 1456
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/5491


    Title: 台灣地區強地動衰減式研究與路徑效應分析;Ground-motion attenuation relationship and path-effect study using Taiwan Data set
    Authors: 林柏伸;Po-Shen Lin
    Contributors: 地球物理研究所
    Keywords: 反應譜;強地動衰減式;路徑效應;response spectra;Ground-motion attenuation relationship;path-effect
    Date: 2009-07-10
    Issue Date: 2009-09-22 09:55:07 (UTC+8)
    Publisher: 國立中央大學圖書館
    Abstract: 為了建立適合台灣地區機率式地震危害度分析(Probabilistic Seismic Hazard Analysis, PSHA)使用的反應譜強地動衰減式(spectral ground motion attenuation relationship),本研究以中央氣象局的自由場強地動觀測網計畫(TSMIP)豐富之強震資料,挑選了60個地殼地震共計5968筆經過基線校正及帶通濾波的強震資料,利用混合效應模型(mixed-effect model)以最大概似法來進行本研究衰減式的迴歸分析,透過非線性迴歸分析來探討地動值與震源、路徑及場址之間的關係,以地震學理論基礎的衰減模型,考慮場址特性(Vs30)、震源機制以及地體構造特性差異,完成適合台灣地區之地殼地震PGA及各週期反應譜衰減式及其殘差分析。 本研究選取有收錄超過20的地震資料的測站,進行路徑效應對於衰減式影響的研究,將這些測站所記錄到的資料進行分析,瞭解路徑以及場址效應對於衰減式標準偏差的影響。對於PGA而言,事件內的對數標準差為0.54,並且可以拆解為測站項0.238、路徑項0.317及剩餘的隨機變異。對於事件間的對數標準差0.342則可以拆解為震源區域項0.177及剩下的隨機變異,如果把測站項、路徑項及震源區域項移除僅考慮自然的隨機變異,則衰減式的標準差將可降低28%。由此結果我們將可以定義一個空間相關的邏輯樹來進行不考慮遍歷性假設的機率式地震危害度分析,獲得更好的成果。 A strong ground-motion attenuation equation is essential and influential for seismic hazard analysis. Therefore, we need to study the strong ground-motion attenuation relationship for earthquakes in Taiwan. A suitable attenuation equation can express the characteristics of the strong ground-motion attenuation for a region, and can be used to predict the ground-motion value of a specific site for seismic resistance design. In this study, well processed strong ground-motion data from TSMIP in Taiwan are used to establish PGA and SA attenuation equations. A total of 60 earthquakes with 5968 records are selected and nonlinear mixed-effect model with maximum likelihood method is used to accomplish the regression analysis of ground-motion attenuation relationships for PGA and SA. From the analysis we can estimate ground-motion value with certain earthquake source, distance and site condition. Strong motion data from Taiwan with at least 20 earthquakes recorded at each station are used to estimate the site and path effects on the standard deviation of empirical ground motion models. For PGA, the intra-event standard deviation of 0.54 ln units is separated into an inter-site term (0.238), an inter-path term (0.317), and the remaining aleatory variability. The inter-event standard deviation of 0.342 is separated into an inter-region term (0.177) and the remaining aleatory variability. Removing inter-site, inter-path, and inter-region terms, the aleatory standard deviation is 28% lower than the total standard deviation with the ergodic assumption. Models of the spatial correlation of the intra-event path terms and the inter-event source region terms are developed for PGA and spectral periods of 0.1, 0.3, 0.5, 1.0, 3.0, and 5.0 seconds. These models can be used to define spatially correlated logic trees to capture the epistemic uncertainty in the median ground-motion value needed to conduct a probabilistic seismic hazard without the ergodic assumption, and better achievement would be derived.
    Appears in Collections:[Graduate Institute of Geophysics] Electronic Thesis & Dissertation

    Files in This Item:

    File SizeFormat


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明