中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/57039
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42724094      Online Users : 1258
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/57039


    Title: 拉格朗日子流形之單值群及辛形式之合痕性研究;Monodromy Groups of Lagrangian Submanifolds and Isotopies of Symplectic Forms
    Authors: 姚美琳
    Contributors: 中央大學數學系
    Keywords: 數學類
    Date: 2009-09-01
    Issue Date: 2012-10-01 15:10:16 (UTC+8)
    Publisher: 行政院國家科學委員會
    Abstract: 本計畫將從兩方面拓展計畫主持人新近有關單調拉格朗日環面單值群及合痕性之研究. 其一是將研究結果推廣至高維辛空間中的單調拉格朗日子流形, 研究其單值群及合痕性之關聯, 以及單值群不變量之高維推廣. 其二是以單調拉格朗日環面之漢彌爾頓單值群之對稱性為出發點, 尋求單調拉格朗日環面餘集上辛形式合痕類之代數刻劃, 並希望能獲致對應的手術程序, 進而提供一個具有一般性的研究方法, 以利於一般辛流形上辛形式合痕性之研究. 對拉格朗日子流形及辛形式之合痕性質之理解向來為辛拓樸領域之重要課題, 然吾人對其之掌握仍相當有限, 本計畫的結果將對此二議題作出新的貢獻. ; This project consists of two directions related the PI’s recent research on monodromy groups of Lagrangian tori in R4. One is to extend the study of monodromy groups and their invariants to Lagrangian submanifolds in higher dimensional symplectic spaces. The other one, based on the PI’s characterization of Hamiltonian monodromy groups of monotone Lagrangian tori and Chekanove tori in R4, seeks to obtain an algebraic invariant and even a surgical procedure to characterize the two associated relatively non-isotopic symplectic forms on the complement of a monotone Lagrangian torus. Isotopy properties of Lagrangian submanifolds and symplectic forms are important topics in the field of symplectic topology. And one would like to have a complete understanding of these properties for symplectic manifolds as simple as R2n. Results of the first part of this project will improve our understanding of Lagrangian submanifolds in dimensions greater than four, whilst results of the second part of this project will pave the road to a more systematic study of isotopy problems of symplectic forms in dimension four. ; 研究期間 9808 ~ 9907
    Relation: 財團法人國家實驗研究院科技政策研究與資訊中心
    Appears in Collections:[Department of Mathematics] Research Project

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML279View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明