我們發展出易形成凝膠的結構,DN143、DX23、DX97、DX101 以及 DX47成功合成出一系列含有碳氟長鏈的有機凝膠片段,並以乙炔?、乙炔芘作為主體得到最終的有機凝膠化合物。在形成凝膠能力的測試中發現 DN143、DX23、DX97、DX101以及DX47 在許多有機溶劑中皆可以形成凝膠,而且具有良好的形成凝膠能力。其中 DX97 及 DX101 含有兩價的鉑金屬,發現加入兩價的鉑金屬對形成凝膠也有一定的影響,且會表現出特別的性質。以變溫吸收光譜、放射光譜及不同狀態下的吸收、放射光譜探討其分子間作用力及光物理變化,得知會形成聚集及分子間自組裝主要以J-type aggregation形式進行;利用 1H NMR 了解凝膠分子形成凝膠主要是以分子間的氫鍵、pi-pi 作用力及 C-H???pi作用力而成。透過TEM和SEM的觀察,其凝膠分子會自組裝排列成纖維結構或球形結構,其中 DN143 可形成螺旋纖維結構、DX97 可形成球形結構。另外,含有兩價的鉑金屬碳氟長鏈凝膠分子 DX97 與 DX101 皆表現出獨特的性質。 DX97 除氧後可在放射光譜中的長波長看見磷光,但 DX101 卻沒有出現磷光的放射峰;DX101 在某些溶液中發生光化學反應形成 photodimer,形成 dimer 後其光物理 特性會有明顯的改變。 A series of supramolecular gelators, DN143, DX23, DX97,DX101 and DX47, based on anthracene or pyrene with perfluoroalkyl chain pyridine-2,6-dicarboxamides has been synthesized. All gelators show excellent gelation ability in many organic solvents. We have found that the presence of the perfluoroalkyl chains as well as the Pt(II) metal centers both contribute to the gel formation and have great effects on their resulting physical properties. A variety of spectroscopic methods have been applied to identify the intermolecular interactions upon gel formation and explore the photophysical properties. The primary driving forces for the gel formation are intermolecular hydrogen bonding, aromatic pi-pi, and C-H???pi interactions. The supramolecular aggregates in these organogels are considered to be the J-type aggregation. SEM and TEM morphologies on the xerogels reveal that the gelators self-assembled into fibers or spheres. Interestingly, helical fiber and sphere-like morphologies were observed for DN143 and DX97. In addition, DX97 and DX101 containing Pt(II) metal centers and perfluoroalkyl chains exhibit unique properties. DX97 exhibit dual emission with both fluorescence at 406 nm and strong phosphorescence at 655 nm. In contrast, DX101 does not show any detectable phosphorescence but only fluorescence at 436 nm. Photocycloaddition product was identified for DX101 in chlorinated solvent under UV irradiation. The mechanism for the observed photochemistry likely involves singlet oxygen and proceeds with free-radical pathways.