|
English
|
正體中文
|
简体中文
|
全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42728994
線上人數 : 1268
|
|
|
資料載入中.....
|
請使用永久網址來引用或連結此文件:
http://ir.lib.ncu.edu.tw/handle/987654321/60697
|
題名: | 建構多通道高靈敏金屬輔助波導共振核酸適合體式生物檢測系統;Construction of multi-channel high sensitivity metal-assisted guided mode resonance aptasensor for bio-analytical applications |
作者: | 鄭勝文;Zheng,Sheng-wen |
貢獻者: | 光電科學與工程學系 |
關鍵詞: | 金屬輔助波導共振;核酸適合體;生物感測器;壓印技術;凝血? |
日期: | 2013-07-22 |
上傳時間: | 2013-08-22 11:44:27 (UTC+8) |
出版者: | 國立中央大學 |
摘要: | 本文研製一新型高敏感光學生物感測器:金屬輔助波導共振元件(Metal-assisted guided mode resonance, MaGMR),本元件利用壓印技術取代傳統半導體技術,製作次波長光柵結構,可以增加光柵耦合生物感測器的生產速率及降低製作生產成本,再將感測器結合光學波導共振元件與核酸適合體(Aptamer),成為核酸適合體式生物感測器(Aptasensor),並且建構多通道生物檢測系統應用於凝血?之檢測。實驗所使用的兩條抗凝血?核適體為15-mer aptamer 和 29-mer aptamer,分別可結合於凝血?上的纖維蛋白結合區和肝素結合區。 本研究主要分成三部分:模擬、製程、檢測。模擬部分主要是利用嚴格耦合波理論(Rigorous Coupled-Wave Analysis, RCWA)方法,比較金屬輔助波導共振元件(MaGMR)以及傳統波導共振元件(GMR)的差異以及靈敏度,證明金屬輔助波導共振元件為一個高靈敏度的元件,且設計壓印型MaGMR元件。製程使用熱壓型壓印法來製作光柵結構,並利用模擬參數製作出完整的壓印型MaGMR元件,且使用SEM和AFM觀察其結構週期及深度,驗證使用壓印製作MaGMR的結果。檢測部分主要的重點為建構一套多通道生物檢測平台,首先使用不同濃度的食鹽水溶液進行檢測,其食鹽水的折射率變化為1.3330至1.3705,由實驗結果可知,此生物晶片有達到可重複性使用與重現性的目標,其量測結果與光學模擬結果相當吻合。本研究亦利用表面元素分析儀(electron spectroscopy for chemical analysis, ESCA)分析表面元素且確認晶片改質的結果,接著利用檢測平台成功即時檢測不同濃度之凝血?,檢測範圍從0.25M 到1.5M 之濃度與其訊號飄移量呈線性關係,而15-mer和29-mer aptamer的檢測極限(limit of detection, LOD)分別為0.12M和0.16M,並且驗證了Aptasensor對凝血?的專一性。 In this thesis, a metal-assisted guided mode resonance (MaGMR) optical biosensor is demonstrated. We use the nanoimprint lithography to replace the traditional semiconductor lithography processes, using this method the yield rate can be increased and reduce production costs. Then, we use the aptamer to be the recognizing part and using the metal-assisted guided mode resonance (MaGMR) device to be the transducer, so the device is called aptasensor. After that, we also built a multi-channel detection system for MaGMR aptasensor, and the 15-mer and 29-mer thrombin aptamer was immobilized on the surface of MaGMR device as a recognizing ligand for thrombin detection. This study is divided into three parts:simulation, process and detection. The part of simulation is mainly used rigorous coupled-wave analysis (RCWA) method to analyze the difference and sensitivity between MaGMR and GMR it shows the MaGMR is a high sensitivity device. The part of process shows the home-made hot embossing nanoimprint system for MaGMR chip. Then we design and optimize the nanoimprint device of MaGMR. After that, we used atomic force microscopy (AFM) and scanning electron microscope (SEM) to inspect the structure of MaGMR it can verify the feasibility of the hot embossing nanoimprint MaGMR. The part of detection is mainly built multi-channel detection platform. At first, we use sodium chloride solutions to check the bulk sensitivity of MaGMR. The background index varies from 1.3330 to 1.3705, it can calculate sensitivity and noise ratio. The experimental result is stable and repeatable. We utilized the surface modification methods to form a self-assembly monolayer (SAM) on the surface before the detection of thrombin. This study used electron spectroscopy for chemical analysis (ESCA) to verify the surface modification result. Finally, we achieve the thrombin sensing in concentration range from 0.25 to 1.5 μM, and verify the specificity of aptasensor.The limit of detection (LOD) is 0.12M and 0.16M for 15 and 29-mer antithrombin aptamer, respectively. |
顯示於類別: | [光電科學研究所] 博碩士論文
|
文件中的檔案:
檔案 |
描述 |
大小 | 格式 | 瀏覽次數 |
index.html | | 0Kb | HTML | 1222 | 檢視/開啟 |
|
在NCUIR中所有的資料項目都受到原著作權保護.
|
::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::