中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/61162
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 42749517      在线人数 : 1685
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/61162


    题名: 改良式粒子群方法之無失真影像預測編碼應用;Predictive Coding for Lossless Image Compression Based on Improved PSO
    作者: 李宗勳;Lee,Tsung-Shun
    贡献者: 電機工程學系
    关键词: 無失真影像壓縮架構;最佳化方法;粒子群演算法;預測誤差補償;算術編碼器;Lossless image compression architecture;Optimization Methods;Particle Swarm Optimization;Error Compensation Mechanism;Arithmetic Coding
    日期: 2013-07-09
    上传时间: 2013-08-22 12:13:36 (UTC+8)
    出版者: 國立中央大學
    摘要: 本論文中,我們提出了一種改良式的粒子群演算法,名為增減式慣性權重粒子群演算法(particle swarm optimization with increasing - decreasing inertia weights, IDWPSO),並應用IDWPSO於影像壓縮。標準粒子群演算法中每一個體使用共同的慣性權重,而本文所提的方法,使粒子能自適應性地產生自己的慣性權重,在粒子群最佳化初期,透過遞增慣性權重,可以更有效的從局部探索開始,逐漸演化,等到集中收斂至一階段後,再將其它轉換成二階遞減模式以求迅速的把其它個體帶往全域最佳解。接著我們處理影像壓縮的問題,利用IDWPSO方法,獲取更好的壓縮率。由於我們得知最小平方法產生的預測誤差,往往出現在影像邊界相交處,所以我們在偵測到影像邊界時,採取IDWPSO預測器來提升預測的精確性,以防止耗費大量的運算,減少系統的運算的複雜度。從實驗結果證實,所提出的IDWPSO可以大幅的增進預測的精確性,最後在位元率(bit/pixel)的比較方面,與MED (Median Edge Detector, MED)相比改善了約7%、與GAP (Gradient-Adjusted Prediction, GAP)相比改進了約4%,也比EDP (Edge-directed Prediction, EDP)相比降低了約2%,證實所提出的演算法的確能有效提高影像編碼的效能。
    In this thesis, we propose a modified optimization algorithm which is called particle swarm optimization with increasing-decreasing inertia weights (IDWPSO). Unlike the standard PSO algorithm, the proposed IDWPSO utilizes different weights for different particles. Initially, a small inertia weight is used for each particle to begin a global search. Then the individual inertia weights are respectively increasing linearly for more effective local searches. Finally, the inertia weights are switched to a larger value and then decreased quadratically to find a convergent optimum. Afterwards, the IDWPSO is applied to image coding problem as an image predictor. The IDWPSO predictor will be operated only when an edge is detected. The experimental results show that the proposed lossless image coding approach obtains more accurate image prediction. And better bit-rate compression is also obtained. As seen in the experiments, the IDWPSO is a 7% improvement over the MED (Median Edge Detector, MED), 4% over GAP (Gradient-Adjusted Prediction, GAP), and 2% over EDP (Edge-directed Prediction, EDP). These demonstrate the effectiveness of the proposed IDWPSO for the image coding.
    显示于类别:[電機工程研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML622检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明