摘要: | 論文分為二個部分,第一部分利用分子篩吸附有機硫化物噻吩,第二部分為中孔洞SBA-1穩定性的研究 第一部分所使用之沸石吸附劑為商業化沸石。以液態離子交換法 (Liquid phase ion exchange) 與氣態離子交換法 (Vapor phases ion exchange) 將銅離子負載於商業化沸石上,利用固定床式吸附法 (fixed-bed filters) 進行吸附研究,探討銅離子對吸附噻吩分子的影響,並使用熱程控還原 (Temperature programmed reduction, TPR) 、感應耦合電漿質譜儀 (Inductively coupled plasma-mass spectrometer, ICP-MS) 、X-光螢光分析儀 (X-ray Fluorescence Spectrometer, XRF ) 和反射式紫外-可見光光譜儀 (UV-VIS Spectrophotometer) 等儀器進行分析。由結果發現吸附沸石的能力與沸石自身的孔洞大小有關,商業化沸石中孔洞較大者具有較佳的吸附效果,且經由負載一價銅離子可藉由 π-complexation 的作用力提升吸附能力。文中並探討負載銅離子的方法,發現以氣態離子交換法相較於傳統的液態離子交換法更能有效的負載一價銅於沸石上,吸附能力依序如下 Cu(I)-Ferrierite < Cu(I)-Mordenite < Cu(I)-CaX < Cu(I)-ZSM-5 < Cu(I)-Beta < Cu(I)-Y。除了商業化沸石之外,本研究還利用孔洞較大的中孔洞 SBA-15 進行吸附研究,但由於 SBA-15 的孔洞太大,反而不能有效的吸附噻吩分子。 第二部分為中孔洞 SBA-1 穩定性的研究,利用四種矽源 TMOS (Tetramethyl orthosilicate)、TEOS (Tetraethyl orthosilicate)、TPOS (Tetrapropyl orthosilicate) 和 TBOS (Tetrabutyl orthosilicate) 合成 SBA-1,此四種矽源水解速率不同且水解亦產生不同的醇類,對微胞的影響也不同,因而影響堆積常數的數值,造成孔洞材料結構的差異。發現以 TMOS 為矽源可在較大的溫度範圍 (273 K ~ 323 K) 合成出 SBA-1,TEOS 與 TPOS 則因溫度的影響,會合成出 SBA-1 與 SBA-3 的混相,而 TBOS 則無法合成 SBA-1。文中並深入探討以 TMOS 所合成 SBA-1 的熱穩定性與水煮穩定性,在熱穩定性部分發現耐熱溫度可達 1123 K,且仍有 642 m2/g 的孔洞表面積。水煮穩定性部分,則發現耐水煮時間最少可到達 4 小時,水煮時間達 8 小時和 12 小時後仍為有結晶性的 SBA-1 ,但 XRD 的強度較弱,相較於 TEOS 有較好的水煮穩定性。 The thesis is divided into two parts. First, adsorption of the organic sulfur compounds thiophene (TP) by zeolites which were ion exchanged either by vapor phase ion exchange (VPIE) or liquid phase ion exchange (LPIE). The adsorptions were studied in a fixed-bed adsorber operated at ambient temperature and pressure. The vapor phase ion exchange method can effectively exchange cation with the proton in zeolite more than liquid phase ion exchange method. The adsorbability tests for surfur adsorption capacity at breakthrough follow the order Cu(I)-Ferrierite < Cu(I)-Mordenite < Cu(I)-CaX < Cu(I)-ZSM-5 < Cu(I)-Beta < Cu(I)-Y. After adsorption, some zeolites have color changed due to polymerization of thiohpene. Besides zeolite, mesoporse SBA-15 was also used to adsorb thiophene but it can not adsorb thiophene. In the second part of the thesis, the critical role of silica precursors in the synthesis of the cubic SBA-1 mesophase under strongly acidic condition at different synthesis temperatures has been investigated. The present of higher concentration of corresponding alcohol due to the hydrolysis of silica precursors, which effectively serve as cosolvent or as cosolution to interference the surfactant parking parameter, is a key factor for mesoporous to shape up. Further, we also used TMOS as main silica precursor to synthesis SBA-1 and then tested the thermal stability and boiling water stability of it. At the thermal stability part, the heat-resistant of SBA-1 can stand at least 1123K and still have the pore surface 642 m2/g. At the boiling water stability part, TMOS can stand at least four hours and without decrease the intensity of XRD and is better than using TEOS as silica precursor. |