中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/62581
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42694397      Online Users : 1498
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/62581


    Title: 以時間解析多光子光發射電子顯微術直接觀測表面電漿子極化電荷分佈,動態場增強及渦流誘發之異常穿透;Direct Visualize the Polarization Charge Distribution of Surface Plasmons, Dynamical Field Enhancement, and Vortex Induced Extraordinary Transmission Based on Time Resolved Multiphoton Photoemission Electron Microscopy
    Authors: 戴朝義
    Contributors: 國立中央大學光電科學與工程學系
    Keywords: 物理
    Date: 2012-12-01
    Issue Date: 2014-03-17 11:51:30 (UTC+8)
    Publisher: 行政院國家科學委員會
    Abstract: 研究期間:10108~10207;We propose to directly visualize the polarization charge distribution, dynamical field enhancement, and power vortex induced extraordinary transmission based on time resolved multi-photon photoemission electron microscopy. Surface plasmon is a particular state consisting of the coupling between the incident electromagnetic wave and the collectively oscillated surface charges. Due to the capability of being confined within nano-sized dimension, most research so far heavily rely on the scanning near field optical microscopy (SNOM) to probe the electromagnetic energy distributions in spatial domain. However, to completely understand the transport property of surface plasmon waves, polarization charge distribution is no doubt an important physical quantity. Non-invasive scanning-free photoemission electron microscopy with extremely high spatial resolution enables the direct visualization of surface charge distributions in real time. This may effectively compensate the deficit of SNOM which can hardly measure the surface charges directly. With the charge density and the energy density measured, the divergence and curl of the Poynting vector can be determined. According to Helmholtz theory, the vector field of the power flow in spatial domain can be completely constructed. In addition, combining pump-probe technique, time evolution of the power flow can be established. In this three-year project, we plan to experimentally verify our existing simulation results which include the enhancement of optical nonlinear effect of manmade Maxwell-Garnett medium, degenerate modal splitting induced by intra-cavity corner-to-corner resonance in plasmonic ring resonators, and power vortex induced extraordinary transmission in subwavelength metallic single slit.
    Relation: 財團法人國家實驗研究院科技政策研究與資訊中心
    Appears in Collections:[Department of Optics and Photonics] Research Project

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML401View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明