English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42649871      線上人數 : 817
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/62614


    題名: 海域複雜構造震測資料處理與全波場逆推;Complex Structure Imaging with Full Waveform Processing and Inversion of Marine Seismic Data
    作者: 陳浩維
    貢獻者: 國立中央大學地球物理研究所
    關鍵詞: 地球科學;海洋科學;防災工程
    日期: 2012-12-01
    上傳時間: 2014-03-17 11:52:24 (UTC+8)
    出版者: 行政院國家科學委員會
    摘要: 研究期間:10108~10207;This proposal is mainly organized by TEC organization under the newly established research subject: computational seismology research. The current proposal is a combination of two personnel including principal investigator: H.W. Chen and Co-principal Investigator: Zhao Li of IES-AS. The proposed methodology is a multi-purpose research plan by combining three major tasks using unified approach for simultaneous source rupture and crustal structure imaging through full waveform inversion. Two major field data resources are: using broadband strong motion data from both Bats/TSMIP and wide-angle seismic data collected from the past or from a newly initiated TAIGER (2006-2008) international project. In the past 30 years, earthquake researches in Taiwan are mainly on data collection and related fundamental researches. However, more important issues including promoting and demonstrating research capability for various scientific targets are obviously more important for the next generation in terms of seismology research in Taiwan. Drawing good science out from the abundance of earthquake and wide-angle seismic dataset is apparently more important, under the condition that if we have a good computing system to start with. Having hardware facility constructed for various research topics is only an essential. The objectives of the proposal are: Theoretical studies and development: (1) to extend the previous work of 2-D to 3-D. Theoretical development, test and evaluation of various wave simulation codes. (2) Enhance the strength of computational seismology for better understanding of realistic wave propagation phenomena, (3) hardware facility and parallel computing algorithm will be the main tool to be developed for practical applications. Practical applications are: (1) to explore the spatial and temporal finiteness of an earthquake source and the three-dimensional heterogeneous earth structure. (2) To investigate source, path and site responses including topography effects; amplification due to effects of shallow soil/sedimentary layers, basin shape, lateral velocity variation, Q distribution and/or others. (3) To perform prestack imaging for both wide-angle land and MCS/OBS marine seismic data (4) to simulate earthquake source mechanism and rupture process when large earthquake occurred under or in the immediate vicinity of Taiwan Island. (5) Apply receiver function analysis to explore 3D Conrad and Moho geometries beneath Taiwan Island. (6) To investigate the effects of attenuation as the function of distance, depth, frequency, scattering and the feasibility of reverse-time wave propagation or inversion. Accurate seismic modeling, both time-domain computations of acoustic, elastic, viscoacoustic and viscoelastic responses will be developed, tested and evaluated. Current 3D spatial distribution of P-, S-velocity will be studied, modified, and evaluated. Effects on source mechanism, propagation, and site response due to local geology and topography changes will be studied. The proposed research is to study 2D and 3D anelastic seismic responses. Numerical model building is a pre-requisite for prestack forward modeling. For field data study, we will focus on strong motion records that are widely available through TSMIP and data management system (DMS) since 1990. Another source of wide-angle seismic data will potentially from the study of ocean-bottom seismograph and multi-channel marine seismic data from TAICRUST experiment in 1995 and a newly approved TAIGER project (2006-2008) through international cooperation. The PIs will actively involve in data collection and assimilation including field works with both onshore and offshore marine geophysicist. The result from both wavefield simulation and inversion will be published in the international journal. The main computation kernel for Wave propagation will utilize SEM, modified high order staggered grid FDM and PSM for different allocated scientific problems.
    關聯: 財團法人國家實驗研究院科技政策研究與資訊中心
    顯示於類別:[地球物理研究所] 研究計畫

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML548檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明