中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/62630
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 43386891      Online Users : 1344
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/62630


    Title: 以超臨界流體於石墨烯上擔載奈米催化顆粒並研發其在電化學生化感測器上的應用;Decoration of Nanoparticles on Graphene Using Supercritical Fluid Technique and the Applications of the Prepared Composites on Electrochemical Biosensors
    Authors: 張仍奎
    Contributors: 國立中央大學材料科學與工程研究所
    Keywords: 材料科技
    Date: 2012-12-01
    Issue Date: 2014-03-17 11:52:47 (UTC+8)
    Publisher: 行政院國家科學委員會
    Abstract: 研究期間:10108~10207;This three-year research project aims at developing high-performance electrochemical biosensors with the electrodes composed of graphene and nano-sized catalyst particles. Supercritical fluid technique that is a green process is used to prepare the nanoparticles (NPs). The extremely low viscosity, near-zero surface tension, and high diffusivity of the fluid would cause a narrow size-distribution of the NPs, which are expected to be uniformly dispersed and tightly anchored on the graphene. The reasons of using graphene are based on their high surface area, high edged carbon density, and excellent electric conductivity. These characteristics make graphene an ideal supporting material for the NPs and also an effective electronic conductor that transmits the electrochemical signals (from the bio-sensing reactions). With the aforementioned novel composite electrode materials, the high sensitivity, good selectivity, fast response, great reliability, and superior environmental friendliness of the proposed electrochemical biosensors are expected. Specifically, the major task in the first year is to understand the effects of the synthesis conditions on the material properties of the prepared graphene. Moreover, supercritical fluid deposition technique will be employed to decorate graphene with various NPs with different chemical compositions and particle sizes. Fabrication of composite electrodes (with graphene/NPs) will be also achieved. In the second year, the reaction mechanisms of electrochemical bio-sensing processes (for various species) will be systematically investigated. Finding the key factors that determine the electrochemical performance of graphene is also an important object. Preparation of nano-sized catalyst alloys using supercritical fluid will be attempted, trying to further improve the electrode sensing performance. Based on the collected research results, specific biosensor electrodes will be proposed for individual sensing species in the final project year. According to the testing environments, particular electrochemical sensing modes will be adopted to optimize the detection sensitivity. With the established knowledge and techniques, we will look forward to cooperating with related industrials, aiming to put our experimental results into practice applications.
    Relation: 財團法人國家實驗研究院科技政策研究與資訊中心
    Appears in Collections:[Institute of Materials Science and Engineering] Research Project

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML370View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明