中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/62634
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 78937/78937 (100%)
Visitors : 39837412      Online Users : 1139
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/62634


    Title: 以離子液體為電解液之新一代超高電容器的研發;Development of New-Generation Supercapacitors Incorporating Ionic Liquid Electrolytes
    Authors: 張仍奎
    Contributors: 國立中央大學材料科學與工程研究所
    Keywords: 電子電機工程;材料科技;能源工程
    Date: 2012-12-01
    Issue Date: 2014-03-17 11:52:52 (UTC+8)
    Publisher: 行政院國家科學委員會
    Abstract: 研究期間:10104~10203;This is a three-year research project that aims at developing a high-performance supercapacitor device, which incorporates ionic liquid (IL) electrolyte. The proposed new-generation supercapacitor is safe to operate and environmentally friendly. Combining the unique physicochemical characteristics of ILs and nano-structured metal oxide electrodes (or oxide/carbon composite electrodes), the large cell voltage, high energy density, high powder density, wide operation temperature range, and long cycle life of the constructed supercapacitors are anticipated. The major research task in the first year is to synthesize ILs with low viscosity, high conductivity, high thermal stability, and large potential windows for supercapacitor applications. In addition, effects of the size, shape, and chemistry of the constituent cations and anions in ILs on the pseudocapacitive properties of various oxide electrodes (e.g. RuO2, MnO2, Co3O4, Co(OH)2, Fe3O4, etc.) and composite electrodes will also be systematically investigated. In the second year, two strategies are going to be used to optimize the pseudocapacitive performance of the electrodes. One approach is to create a nano-architectured oxide electrode, promoting the electrochemical reactivity with IL electrolytes. The other is to design (or tailor) the composition of ILs (either modifying the constituent ions or adding foreign ions) to match the porosity, crystal structure, and chemistry of various electrodes, attempting to improve the pseudocapacitive reaction (That is why IL is considered as “task specific liquid”!). Based on the fundamental understanding of the energy storage mechanism of the supercapacitors, which incorporate various oxide electrodes and IL electrolytes, the main research focus in the third year is to construct a full-cell capacitor device. Assembling asymmetric anode and cathode electrodes will be attempted to further enlarge the cell voltage, which is beneficial for increasing both the energy density and power density of a supercapacitor. With the established knowledge and techniques, we will look forward to cooperating with supercapacitor industrials trying to put our laboratory results into practice applications.
    Relation: 財團法人國家實驗研究院科技政策研究與資訊中心
    Appears in Collections:[Institute of Materials Science and Engineering] Research Project

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML401View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明