English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42682775      線上人數 : 1390
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/62880


    題名: 複合估計函數:一個分析相關性資料的新方法;Composite Estimating Functions - a New Approach for Correlated Data
    作者: 鄒宗山
    貢獻者: 國立中央大學統計研究所
    關鍵詞: 統計學
    日期: 2012-12-01
    上傳時間: 2014-03-17 14:08:40 (UTC+8)
    出版者: 行政院國家科學委員會
    摘要: 研究期間:10108~10207;The aim of this project is to establish a new semi-parametric means of analyzing correlated data. The idea is to combine two estimating equations, one for dependent data and one for accommodating the nature of within-cluster association existing in data. This project is inspired by the work of Tsou (2008a, 2008b), where the multivariate negative binomial model was used to analyze general correlated count data. The score function based on this working model is composed of two parts. The first one is simply a score function from Poisson and the second is an estimating function utilizing cluster total as response. Both functions are unbiased. We explore the usefulness of this “composite estimating equations" method for analyzing correlated data whose underlying distributions need not to be known. The performance of the composite estimating equations will be investigated in terms of asymptotic properties, such as the asymptotic normality and the efficiency. Comparisons to the generalized estimating equations (GEEs) and the composite likelihood method will also be made.
    關聯: 財團法人國家實驗研究院科技政策研究與資訊中心
    顯示於類別:[統計研究所] 研究計畫

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML318檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明