在本篇研究是以CNTES ((2-cyanoethyl)triethoxylsilane) 與 TMOS (Tetramethyl orthosilicate) 為共同矽源, 使用 C16TEABr (cetyltriethylammonium bromide) 作為模板試劑,在反應溫度為273 K 下直接合成具有氰基官能基的中孔洞材料SBA-1,之後經由HCl / EtOH 溶劑做萃取處理,移除模板後,得到的中孔洞材料仍然具有 SBA-1 的結構存在。研究發現氰基官能基化的中孔洞材料SBA-1,其 CNTES 含量可達25%,對於中孔洞立方結構不會造成相轉變或是結 構破壞,而其表面積、孔洞體積以及孔洞直徑均會隨CNTES 含量的 增加而有遞減的趨勢。 藉由改變不同的酸量、不同的水熱時間、不同的攪拌時間以及不 同矽源,探討對於合成具有氰基官能基的SBA-1 的影響。在改變不 同的酸量的方面,可以觀察到不同的結果,在XRD 的結果中,可發 現隨著酸量的增加,可加入在SBA-1 中的CNTES 之含量也隨之增 加,而在29Si MAS NMR 也觀察到隨著酸量的增加,有助於中孔洞材 料SBA-1 結構的穩定。 利用不同酸的種類作為酸源,以及改變攪拌時間與水熱時間,探 討對於氰基官能基氧化率的影響,研究官能基轉變的情形。 Well-ordered cubic mesoporous silicas SBA-1 functionalized with cyano functional groups have been successfully synthesized via the co-condensation of tetramethoxysilane (TMOS) and ((2-cyanoethyl)triethoxylsilane) (CNTES) templated by cetyltriethylammonium bromide (CTEABr) under strongly acidic conditions. In order to optimize the degree of the structural ordering of cyano-functionalized mesoporous silicas SBA-1, a wide range of synthesis conditions such as synthesis temperature, CNTES loading, reaction time, hydrothermal periods, and acid concentrations and types was systematically investigated. The materials obtained were characterized by a variety of techniques including powder X-ray diffraction (XRD), nitrogen sorption measurements(BET), 13C and 29Si magic angle spinning (MAS), IR, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The concentration of CNTES that can co-condense with TMOS can be up to 25% without observing a significant loss in the structure order of the cubic SBA-1 mesostructure. The lower TMOS/CNTES ratios resulted in materials with higher functional group loadings. The HCl concentration was found to be an important factor determining the stability of cyano-functionalized SBA-1 towards the solvent extraction treatment. The BET surface area and the mesoporous volume decrease with increasing the contents of CNTES in initial synthesis mixture. Thesuccessful incorporation of cyano group in the SBA-1 materials by solid state 29Si MAS , and 13C CP/MAS NMR.