中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/63151
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 42711380      在线人数 : 1415
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    NCU Institutional Repository > 理學院 > 數學系 > 研究計畫 >  Item 987654321/63151


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/63151


    题名: 辛群複體上的ζ函數;Zeta Functions of Complexes Associated to Symplectic Groups
    作者: 王千真
    贡献者: 國立中央大學數學系
    关键词: 數學
    日期: 2012-12-01
    上传时间: 2014-03-17 14:20:15 (UTC+8)
    出版者: 行政院國家科學委員會
    摘要: 研究期間:10108~10207;Let F be a nonarchimedean local field. Recently, zeta functions of finite complexes arising from the Bruhat-Tits building associated to the symplectic group Sp4(F) have been introduced by Fang-Li-Wang. They showed that these zeta functions have a closed form expression related to the degree 4 spin L-functions of GSp4(F). The notion of Ramanujan complexes in the symplectic case was also defined in the same paper, with a classification of Ramanujan complexes given in terms of the behavior of zeta functions. In this project, we propose to study the related questions further. Specifically, since there is another important L-functions associated to GSp4(F), known as the degree 5 standard L-function, it is natural to seek for another family of zeta functions for finite complexes arising from the building associated to Sp4(F), which have a closed form expression revealing these degree 5 standard L-functions. Also, as the construction of Ramanujan complexes in the case of GLn involves deep results from representation theory including the Jacquet-Langlands correspondence and Ramanujan conjectures, it would be interesting to understand the nature of Ramanujan complexes, including their existence and explicit construction, in the setting of symplectic groups.
    關聯: 財團法人國家實驗研究院科技政策研究與資訊中心
    显示于类别:[數學系] 研究計畫

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML284检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明