中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/63178
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 42710461      在线人数 : 1490
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    NCU Institutional Repository > 理學院 > 數學系 > 研究計畫 >  Item 987654321/63178


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/63178


    题名: 隨機熱傳導方程式之研究;A Study on Stochastic Heat Equations
    作者: 須上苑
    贡献者: 國立中央大學數學系
    关键词: 數學
    日期: 2012-12-01
    上传时间: 2014-03-17 14:20:57 (UTC+8)
    出版者: 行政院國家科學委員會
    摘要: 研究期間:10111~10207;There are two common approaches to stochastic partial differential equations.One is infinitely dimensional approach, the other one invented by J. Walsh is more probabilistic. We are using Walsh’s approach and consider stochastic heat equations (SHEs) which is a family of heat equations with added Gaussian noises. Since rough noises have been added, the behaviors of solutions are different from the [deterministic] heat equations (HEs). For example, in dimension one with constant initial data, the solutions to SHEs have fluctuations. Our plan is to understand the behaviors of the solutions, such as intermittency, fractal-like exceedance sets. Moreover, by observation of the solutions in mild form, intuitively the solutions can be locally approximated by the solutions to stochastic differential equations. We are interested in giving a rigorous proof of it. When the initial data vanishes at infinity, the solutions to HEs go to infinity exponentially; in the case of SHEs, we like to know how fast the solutions to SHEs dissipate.
    關聯: 財團法人國家實驗研究院科技政策研究與資訊中心
    显示于类别:[數學系] 研究計畫

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML317检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明