English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42897887      線上人數 : 812
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    NCU Institutional Repository > 理學院 > 數學系 > 研究計畫 >  Item 987654321/63206


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/63206


    題名: 流體問題中的穩定化有限元方法之分析與計算;Analysis and computation of the stabilized finite element methods for flow problems
    作者: 楊肅煜
    貢獻者: 國立中央大學數學系
    關鍵詞: 數學;物理
    日期: 2013-12-01
    上傳時間: 2014-03-17 14:21:33 (UTC+8)
    出版者: 行政院國家科學委員會
    摘要: 研究期間:10208~10307;It is well known that the pair of finite element spaces in the mixed finite element method (FEM) for solving, for example, the Stokes equations must satisfy the so-called inf-sup condition if stable and optimally accurate approximations are desired. This condition prevents the use of standard equal order C0 interpolation spaces for velocity and pressure with respect to the same grid, which are the most attractive from the implementation point of view, or low order pairs such as piecewise linear elements for velocity and piecewise constants for pressure. In order to circumvent the inf-sup condition, a class of so-called stabilized FEMs has been developed and intensively studied for almost thirty years and it is still very attractive today. In this two-year project, we will devote to the development of a new stabilized FEM for solving the system of generalized Stokes equations arising from the time-discretization of the transient Stokes problem and the Brinkman equations modeling the flows through porous media. The system of generalized Stokes equations involves a small kinematic viscosityν (the inverse of the large Reynolds number Re) and a large reaction coefficient σ (the inverse of a small time steptΔ). However, the reaction coefficient σ in the system of Brinkman equations is equal to one and in this case we will focus on the Darcy limiting case, namely, +→0ν. Undisputedly, these coefficients will affect the stability and accuracy of the resulting stabilized finite element solutions. We will first derive the error estimates of the stabilized finite element approximation of the velocity field and the pressure in L2 and H1 norms. We will also explicitly establish the dependence of the error bounds on the viscosity, the reaction coefficient and the mesh size. Based on these error estimates, we will study the adaptive computation and related topics of the newly proposed stabilized FEM. Finally, a series of numerical experiments will be performed, and we will compare numerically the effectiveness of the newly proposed stabilized FEM with some existing stabilization methods in the literature.
    關聯: 財團法人國家實驗研究院科技政策研究與資訊中心
    顯示於類別:[數學系] 研究計畫

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML440檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明