中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/63709
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42712459      Online Users : 1445
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/63709


    Title: 可分解友矩陣之研究;A Study on Reducible Companion Matrices
    Authors: 孫梅珊;Sun,Mei-San
    Contributors: 數學研究所
    Keywords: 可分解之友矩陣;numerical range;reducible companion matrices
    Date: 2006-06-29
    Issue Date: 2014-05-08 15:26:34 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本論文探討「可分解友矩陣」的一些性質。我們證明若一個非么正友矩陣 A 可分解成A1 ⊕ A2,則 且
    。令*1 1 rank( ) 1 kI −AA =* =
    2 2 rank( ) 1 n k I AA − − { : rank( * )=1 and | | , ( )} n n Sα ≡ A∈M I−AA λ =α ∀λ ∈σ A
    ,則相當於1 是屬於A k Sα 且2 是屬於A 1/
    n k S α
    − 。亦證明每一個屬於n Sα
    集合內的矩陣均具有循環、不可分解、且其數值域之邊界為一
    可微曲線。並證明下列敘述互為等價:(a) ;(b)
    ;(c)
    1 W(A)=W(A)
    1 1) n 2 n1 W(J ) W(A − ⊆ W(A ) W(J ) − ⊆ 。
    ;In this thesis, we study some properties of reducible companion matrices. We first prove that if a nonunitary reducible companion matrix A is unitarily equivalent to the direct sum A_1oplus A_2 on mathbb{C}^koplusmathbb{C}^{n-k} with sigma(A_1)={aom_n^{j_1},cdots,aom_n^{j_k}} and sigma(A_2)={(1/ ar{a})om_n^{j_{k+1}},cdots,(1/ ar{a})om_n^{j_n}},where |a|>1 and om_n denotes the nth primitive root of 1,then rank(I_k-A^{*}_1A_1)=rank(I_{n-k}-A^{*}_2A_2)=1. We denote mathcal{S}^{al}_nequiv{Ain M_n:rank(I_n-A^{*}A)=1 and |la|=al,forall: lainsigma(A)}, thus A_1 is in mathcal{S}^{al}_k and A_2 is in mathcal{S}^{1/al}_{n-k}. Next, we prove that every mathcal{S}^{al}_n-matrix is irreducible, cyclic, and the boundary of its numerical range is a differentiable curve.
    Furthermore, we show that the following statements are equivalent:
    (a) W(A)=W(A_1); (b)W(J_{n-1})subseteq W(A_1); (c)W(A_2)subseteq W(J_{n-1}).
    Appears in Collections:[Graduate Institute of Mathematics] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML226View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明