English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 43187408      線上人數 : 647
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/65531


    題名: 基於支持向量機之HEVC畫面內編碼單位快速決策演算法;SVM based fast intra CU depth decision for HEVC
    作者: 劉宴均;Liu,Yen-chun
    貢獻者: 通訊工程學系
    關鍵詞: 高效能視訊編碼;畫面內編碼;編碼單位;快速演算法;支持向量機;HEVC;all intra;CU;fast algorithm;SVM
    日期: 2014-07-31
    上傳時間: 2014-10-15 17:02:56 (UTC+8)
    出版者: 國立中央大學
    摘要: 由JCT-VC (ISO/IEC MPEG和 ITU-TVCEG)所制定的最新一代視訊壓縮標準High Efficiency Video Coding (HEVC),其編碼效率相較於目前主流H.264視訊壓縮標準有顯著提升。延續H.264的巨區塊架構(Macroblock),HEVC將基本編碼區塊改為編碼單元(Coding unit, CU),並採用四分樹編碼結構(Quad-tree)提供更多編碼區塊大小以適應畫面特性,但此種樹狀架構也大幅增加了計算複雜度;而從視訊解析度不斷提升的演進來看,相較於畫面間編碼(Inter coding),畫面內編碼(Intra coding)更能針對畫面中高移動量的部份以較精準的方向模式(Intra mode)去預測,因此發展畫面內CU深度決策快速演算法有其必要性。
    本論文提出一個應用於畫面內編碼的CU深度快速決策演算法,擷取四種空間上的相關性以及原始畫面的資訊為特徵(Feature),包含鄰近CU深度、邊界像素差值、像素變異數以及邊緣點數量,利用類神經網路分析這些特徵對CU切割與否的影響程度,依照輸入特徵給予支持向量機(Support vector machine, SVM)所預測出的結果不同的權重,加權後判斷目前CU是否往下切割,以減少位元-失真最佳化程序(Rate-Distortion Optimization)所帶來的龐大運算量。實驗結果顯示,在些微增加位元率的情況下,利用本演算法平均可以減少46.5%,最高至58.9%的總編碼時間。;Intra coding of the latest video coding standard, High Efficiency Video Coding (HEVC) is an extension of that in H.264/AVC, which is more efficient than inter coding when video resolution becomes higher since it is hard to perform motion estimation well in a limited area when strong motion exists. In addition, HEVC adopted quad-tree based coding unit (CU) which is similar to the role of macroblock (MB) in H.264, had achieved much higher coding efficiency. However, the significant increase of complexity due to the advanced encoding structure cannot be neglected.
    In this paper, an SVM based fast intra CU depth decision algorithm is proposed to reduce the computational complexity. It is convenient to develop the criterion of early CU splitting and termination by applying SVM with features extracted from spatial domain and pixel domain, including neighboring CU depth, boundary pixel difference, pixel variance and number of edge points. Furthermore, proper weightings are given to each SVM prediction result according to the impact of input features analyzed by artificial neural network for making CU depth decision.
    The experiment results show that this fast algorithm provides 58.9% encoding time saving at most, and 46.5% encoding time saving on average compared to HM 12.1.
    顯示於類別:[通訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML374檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明