中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/65815
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42744497      Online Users : 1199
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/65815


    Title: 在多核心電腦上實作偵測k-clique community之平行演算法
    Authors: 鄭豐叡;CHENG,FUNG-YU
    Contributors: 資訊工程學系
    Keywords: 平行演算法;分群問題;連通圖問題;parallel algorithms;k-clique communities;connected components
    Date: 2014-08-27
    Issue Date: 2014-10-15 17:10:56 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 中文摘要
    偵測真實網路中的community結構是重要的研究主題,在許多方面皆有所應用,譬如:生物學、社會學、全球資訊網以及行動通信網路等。有許多不同的community偵測方法被提出。其中,我們發現Palla, G., et al提出的k-clique community相當重要。不過,他們的程式CFinder執行時間比起其它的偵測方法都要來得長。我們提出偵測k-clique community的平行演算法Parallel-Community,並實作在多核心電腦上,藉以縮短偵測k-clique community的時間。不過,在我們實作的時候,發現我們的作法和Gregori, E., et al的COS演算法,在某些部分作法相似。我們用五張真實網路圖,來測試比較Parallel-Community、COS和CFinder。使用單處理器來執行時,Parallel-Community與CFinder相比,最快可以到130倍,最慢至少可以達到54倍。使用多處理器來執行時,Parallel-Community與COS相比,最快可以到61倍,最慢至少可以達到24倍。;Abstract.
    Detecting communities is an important research topic. It can be applied to biology, sociology, World Wide Web, mobile communication networks, etc. Many different detection methods have been published. Among them, k-clique community by Palla, G., et al is an important one. However, their program Cfinder’s execution time compared with other detection methods is time consuming. In order to reduce the running time of detecting communities, we propose a parallel algorithm of k-clique community "Parallel-Community" and implement it on a multi-core parallel computer. When we implement the algorithm, we find out some parts of Parallel-Community are similar to Gregori, E., et al’s COS. We experiment on five real networks to test Parallel-Community, COS, and CFinder. When executing with single processor, Parallel-Community achieve 54 to 130 times faster than CFinder. When executing with multiple processors, Parallel-Community achieve 24 to 61 times faster than COS.
    Appears in Collections:[Graduate Institute of Computer Science and Information Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML486View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明