中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/65892
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42707149      Online Users : 1257
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/65892


    Title: Multiscale Finite Element Method for Helmholtz Equation
    Authors: 黃海明;Purnomo,Reymond
    Contributors: 數學系
    Keywords: 牛頓法;有限元素法;Complex-valued solutions;Newton′s method;Finite element discretization;Kerr nonlinearity
    Date: 2014-08-28
    Issue Date: 2014-10-15 17:17:03 (UTC+8)
    Publisher: 國立中央大學
    Abstract: Helmholtz 方程式為一著名方程式可應用於各種不同的物理問題,特別適用於電磁波的傳導;但是大幅度的震盪、高波數所產生之汙染效應、虛值解以及其非線性都增加求解此一函數的困難度。由於電腦只具有限的CPU容量,若要利用數值模擬得到十分精確的數值結果是非常艱難的。此篇論文採用一方法,我們使用較少的離散點但可得到與較多離散點相同的誤差,此方法同時可應用於線性以及非線性問題。由數值實驗可得知,此方法可以改善線性問題的精確度而避免使用細網格。而對於非線性問題,由於非線性項的影響此一方法提供改善較為不明顯。外,此篇論文亦引入一迭代法用於控制非線性項,並可用於各種數值方法;Helmholtz equation is the one of the mathematical model to describe many physical problems, especially the propagation of electromagnetic waves. Helmholtz equation has some difficulties, such as the highly oscillatory and "pollution effect" for high wavenumber, complex-valued, and has nonlinearity term for nonlinear Helmholtz equation. Because the limitation of memory and CPU size in digital computer, simulating this problem with a large size of computation points is impossible. This thesis presents a method to solve this problem with a few points and has the same accuracy as the large number of discretization point. This method will be applied to both linear and nonlinear problem. From numerical experiment, this method can improve the result and accuracy for linear problem, so that the use of the large number of discretization is not necessary. For nonlinear problem, this method can provide the small improvement because of the nonlinearity term. In addition, this thesis also introduce an iteration method that can handle the nonlinearity term and can be applied for some numerical schemes.
    Appears in Collections:[Graduate Institute of Mathematics] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML474View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明