中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/66749
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 43250351      線上人數 : 731
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/66749


    題名: OSSE實驗架構下利用系集預報敏感度工具探討觀測對於颱風路徑預報及結構之影響
    作者: 周哲維;Chou,Che-Wei
    貢獻者: 大氣物理研究所
    關鍵詞: 系集預報敏感度;系集卡爾曼濾波器;颱風系集預報;觀測對於颱風預報影響
    日期: 2015-01-08
    上傳時間: 2015-03-16 15:09:04 (UTC+8)
    出版者: 國立中央大學
    摘要: 在颱風資料同化預報議題中,觀測資料除了本身的品質之外,其位置亦是對於能
    否獲得有效分析修正量的重要因素之一。本研究透過一系列觀測系統模擬實驗(OSSE)
    模擬2008 年颱風辛樂克,並使用Local ensemble transform Kalman filter (LETKF),
    Weather Research and Forecasting (WRF) model 及系集預報敏感度工具來探討對於颱風
    路徑及結構的影響。本研究利用真實場建立出五組不同位置之探空資料,分別包含海
    洋及陸地(ALL)、陸地(LAND)、海洋(OCEAN)、陸地加飛機穿越(LAND_PF),海陸加
    飛機穿越(ALL_PF)。同化預報實驗結果顯示,在海洋上有觀測的實驗組可成功掌握改
    善颱風北側及東側高度場因此其系集平均路徑都較與真實場較接近。而含有穿越颱風
    之觀測資訊的實驗則是能夠使得颱風的環流結構更加準確,但若僅使用飛機穿越資料
    則仍會因對環境場掌握度不佳而無法提高預報路徑準確度。
    此外,本研究使用Kalnay et al.(2012)提出之系集預報敏感度計算觀測影響,並以
    ALL_PF 實驗結果討論同化哪些位置的觀測有助於減少預報誤差,並進一步以系集路
    徑預報誤差來印證此方法之結果是否合理。結果顯示,大部分在颱風環流範圍以外的
    海洋觀測在24hr 預報中能夠發揮其最大效益,其修正量亦多位於有效修正區(颱風北側
    及東側)。因此透過此敏感度工具可確認同化這個區域的觀測能夠有效改善路徑預報。
    而穿越中心的飛機投落送觀測則是在短期預報中就能提供正面貢獻,尤其是靠近颱風
    中心點的幾個觀測。
    本研究另外使用兩組敏感度測試實驗亦驗證外圍環境場的掌握度對於路徑預報的
    影響,其結果與利用系集敏感度工具評估而得的觀測影響相呼應。;For typhoon assimilation and prediction, the quality of observations and its location
    plays an important role in the problem of acquiring useful analysis increment. To discuss the
    impact of observation location on typhoon track and structure, a series of OSSEs were carried
    out with the Weather Research and Forecasting (WRF) Local ensemble transform Kalman
    filter (LETKF) system and the ensemble based forecast sensitivity method is used to estimate
    the observation impact. In this study, five different sets of observation locations were
    constructed based on the natural run, including ALL (on ocean and land), LAND (on land),
    OCEAN (on ocean), LAND_PF (on land and dropsonde of penetrated flight) and ALL_PF (on
    ocean and land and dropsonde of penetrated flight). The experiment results show that the
    ensemble mean track forecasts are closer to the natural run when there are observations over
    ocean. Mainly, the effective corrections for improving the track prediction are over the
    northern and eastern side of typhoon. In this case, we also found that assimilating the
    penetrating flight dropsonde is helpful for establishing reliable typhoon circulation, but is not
    useful enough for improving the overall track prediction, due to the lack of environment
    information.
    Based on the results of ALL_PF, we use the ensemble-based forecast sensitivity to
    observation (EFSO) method (Kalnay et al., 2012) to estimate the observation impact, and
    investigate which location of observations can significantly reduce the forecast error. The
    result indicates that most of observations outside the typhoon circulation and over the ocean
    region can bring out best benefit within the 24hr forecast. Results also confirm that
    observations with positive corrections are mainly located near north and east region of
    typhoon, as we expected that assimilating these observations can improve the track forecast.
    In addition, assimilating dropsondes provides positive contribution to the short forecast,
    iii
    especially with the observations in the typhoon inner core.
    In addition, two sensitivity experiments were carried out to test the effectiveness of the
    environment observations on improving the track forecast. Results are able to echoed the
    observation impact calculated by EFSO.
    顯示於類別:[大氣物理研究所 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML545檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明