English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42710352      線上人數 : 1521
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/67491


    題名: 以多分子聚合物波導為基礎之單晶片光學網路研究;Study of Polymer-Based Optical Network on Chip
    作者: 陳進達;Chen,Chin-Ta
    貢獻者: 光電科學與工程學系
    關鍵詞: 光學連結;高分子光學波導;矽基光學平台;optical interconnection;polymer waveguide;silicon optical bench
    日期: 2015-05-13
    上傳時間: 2015-07-30 19:37:42 (UTC+8)
    出版者: 國立中央大學
    摘要: 在本篇論文中,我們提出以多分子聚合物波導為基礎之單晶片光學網路的架構概念,此單晶片光學網路發展於具45 度微反射面之矽基光學平台。具矽基凹槽之矽基光學平台提供獨立的光路層與電路層,可分別應用於高速與低速(高頻傳輸線除外)的資料傳輸。光路層是由多分子聚合物波導結合矽45 度微反射面組成,其中45 度微反射面為一個垂直轉變結構提供非共平面光學耦合。為了探討以多分子聚合物波導為基礎之單晶片光學網路的光學與高速訊號傳輸特性,我們利用多分子聚合物波導結合矽45 度微反射面探討點對點及點對多點 (在本篇論文中,我們以1 分2 的光學連結為例子)的光學連結特性。
    在點對點光學連結的研究中,我們利用矽45 度微反射面終止多分子聚合物波導以實現單晶片上非共平面光學耦合,其整體傳輸效率為-3.77 dB (以單模光纖為輸入端,多模光纖為輸出端),通道間之串音小於-40 dB。此外,在輸入端與輸出端的1-dB 對準誤差容忍度可大於± 10  um,此將易於雷射與光偵測器於矽光學平台上之封裝。為了要驗證單晶片上點對點高速訊號傳輸的能力,在本篇論文中,我們將面射型雷射/光偵測器與驅動/放大器電路及多分子聚合物波導整合至矽基光學平台上。其整體光學穿透率為 -4.7 dB (面射型雷射-波導-光偵測器經過兩個45 度微反射面)。當傳輸速度為20 Gbit/s 時,本研究架構可得到乾淨的眼圖且誤碼率優於10-12 可被達成。
    關於在矽基光學平台實現以多分子聚合物波導為基礎之點對多點光學連結
    研究,我們利用多分子聚合物波導結合三個矽45 度微反射面驗證晶片外光學連結之雙輸出端的光學鄰近耦合行為。雙輸出端之1-dB 的對準容忍度至少為±10μm,此有利於光纖封裝(應用於晶片外光學連結),或光偵測器封裝(應用於晶片上光學連結)。以 1 × 2 垂直分光架構為基礎之晶片等級高速光學連結亦被實現於本篇論文。我們將雷射與兩顆光偵測器分別封裝於垂直分光架構的輸入與輸出端,其整體光學穿透率為 -3.26 dB ,兩輸出端的分光比例為1。由高速傳輸的實驗顯示,以多分子聚合物波導為基礎之1 × 2 垂直分光架構,在雷射驅動電流為3 mA 時,本研究架構可得到10-Gbit/s 眼圖。在雷射驅動電流為5 mA 時,雙輸出端的誤碼率優於10-12 也同樣被達成。此證明利用多分子聚合物垂直分光架構實現晶片等級1 × 2 光學連結是非常適合應用於單晶片上具多重輸出端之高速資料傳輸。;In this dissertation, we proposed a concept of polymer-based optical network on chip (ONoC), which is developed on the silicon optical bench (SiOB) with the 45° micro-reflectors. This silicon platform with a silicon trench can provide independent photonic and electrical layers, respectively for high-speed and low-speed (except high-frequency transmission lines) data transmissions on a chip. The photonic layer is composed of the polymer waveguides and silicon 45° micro-reflectors, where the 45° micro-reflector as a vertical-transition structure is utilized for out-of-plane optical coupling. In order to study the optical and high-speed characteristics of polymer-based ONoC, its point-to-point and point-to-multipoint (1 x 2 optical interconnects as an example in this dissertation) optical links using the polymer waveguide terminated at 45° micro-reflectors are investigated step by step.
    For the study of point-to-point optical interconnects based on the SiOB with the polymer waveguides, the 45°-mirror terminated polymer waveguide is realized to
    demonstrate an on-chip non-coplanar optical coupling. Its total transmission of -3.77 dB (single-mode fiber (SMF) as input, multi-mode fiber (MMF) as output) and the
    channel-to-channel cross talk suppressed down to -40 dB are experimentally obtained,respectively. Besides, the large 1-dB alignment tolerances for a SMF at input port and a MMF at output port can be more than ± 10 um, that will facilitate the laser and PD assembly onto the SiOB; In order to demonstrate the high-speed transmission capability of chip-level point-to-point optical interconnects, the VCSEL/ PD and the driver/amplifier IC as well as the polymer waveguides combined with the 45°
    micro-reflectors are integrated on the SiOB, respectively. The total optical transmission (VCSEL-to-waveguide-to-PD via two 45° micro-reflectors) is -4.7 dB. The clear eye pattern and bit error rate (BER) better than 10-12 for the proposed architecture are successfully demonstrated, respectively as the data rate is up to 20
    Gbit/s.
    For the research of polymer-based point-to-multipoint optical interconnects on the SiOB, a polymer waveguide combined with three silicon 45° micro-reflectors are
    realized to demonstrate a two-port optical proximity coupling of the off-chip optical interconnects based on the polymer 1 × 2 vertical splitter. The wide 1-dB alignment tolerances at least ±10 μm for two output ports are achieved, that will facilitate not only the fiber assembly for off-chip optical interconnects, also PD assembly onto the SiOB for on-chip optical interconnects with multiple output ports; The chip-level high-speed optical interconnects based on the polymer 1 × 2 vertical splitter is also demonstrated. One VCSEL and two PD chips are flip-chip assembled onto the splitter to demonstrate the point-to-multipoint high-speed optical interconnects. The total optical transmission is- 3.26 dB with a power-splitting ratio of unity. The high-speed transmission experiment shows the reasonable 10-Gbit/s eye patterns for the proposed architecture under a low bias current (3 mA) of VCSEL. The BERs better than 10-12 at two output ports under a 5-mA bias current are also achieved. It indicates that such the chip-level 1 × 2 optical interconnects using the polymer vertical splitter is
    suitable for high-speed data transmission with multiple output ports.
    顯示於類別:[光電科學研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML532檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明