|
English
|
正體中文
|
简体中文
|
全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42684972
線上人數 : 1535
|
|
|
資料載入中.....
|
請使用永久網址來引用或連結此文件:
http://ir.lib.ncu.edu.tw/handle/987654321/67636
|
題名: | On a Paper of P. M. Cohn |
作者: | 張玟堯;Chang,Wen-Yao |
貢獻者: | 數學系 |
關鍵詞: | 有關Cohn的論文 |
日期: | 2015-06-26 |
上傳時間: | 2015-07-31 00:28:20 (UTC+8) |
出版者: | 國立中央大學 |
摘要: | 這篇碩士論文的初始動機起源於一個由呂明光教授所提出的問題:如何在Q(√-19)的代數整數環上,找一組確切的數對使得它無法用有限次的輾轉相除法除盡。針對這個目標,我們研讀一篇由P. M. Cohn所撰寫的論文 [On the structure of the GL2 of a ring, Inst. Hautes Études Sci. Publ. Math. 30 (1966) 5-53] 從第一節至第六節的定理6.1,最終針對上述問題給出了肯定的回答。換而言之,對於d為19,43,67及163,我們會介紹一個方法去尋找Q(√(-d))的代數整數環上的數對,使得它們生成Q(√-d)的代數整數環,並且無法用有限次的輾轉相除法除盡。除此之外,我們也證明了ω階歐幾里得環是generalized Euclidean。同時,我們也對Cohn的論文上某些錯誤論述給出反例。;The motivation of this thesis is to answer a question asked by Professor M.-G. Leu: To find pairs (b,a) in the ring of algebraic integers in Q (√-19) such that there exists no terminating division chain of finite length starting from the pairs (b, a). For this purpose, we study Cohn′s paper [On the structure of the GL2 of a ring, Inst. Hautes Études Sci. Publ. Math. 30 (1966) 5-53] from Section 1 to Theorem 6.1 of Section 6 and obtain the positive answer fortunately, since Theorem 6.1 is a key clue. That is that we introduce a method to construct explicitly pairs (b, a) of integers in Od, the ring of algebraic integers of Q(√-d), for d = 19, 43, 67, and 163 such that they generate Od and there exists no terminating division chain of finite length starting from them. In addition, we derive some other results: We will prove that an ω-stage Euclidean ring is generalized Euclidean. Also, we give counterexamples to some arguments which were mentioned by Cohn in the paper above. |
顯示於類別: | [數學研究所] 博碩士論文
|
文件中的檔案:
檔案 |
描述 |
大小 | 格式 | 瀏覽次數 |
index.html | | 0Kb | HTML | 556 | 檢視/開啟 |
|
在NCUIR中所有的資料項目都受到原著作權保護.
|
::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::