English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 78852/78852 (100%)
造访人次 : 35331305      在线人数 : 918
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/68716


    题名: 利用移動式中繼節點之耐延遲網路下訊息傳遞機制;Messages Forwarding with Ferries in Delay Tolerant Networks
    作者: 林浩筠;Lin,HauYun
    贡献者: 通訊工程學系
    关键词: 耐延遲網路;Delay Tolerant Networks;Message Ferry
    日期: 2015-08-28
    上传时间: 2015-09-23 14:18:13 (UTC+8)
    出版者: 國立中央大學
    摘要: 利用巡迴式中繼結點在耐延遲網路下進行路由。;Delay-tolerant networks (DTNs) represent mobile wireless networks that are generally characterized by no end-to-end paths from a source to a destination; examples of such networks include military networks, sensor networks, wildlife tracking networks, and vehicular ad hoc networks. In such sparse networks, nodes must carry messages until they contact with appropriate nodes before forwarding the messages. This process is denoted as a store-carry-and-forward routing scheme.


    Although routing algorithms in DTNs are being increasingly designed, the network performance associated with such algorithms is still limited because of node mobility limitations. Therefore, a message ferry scheme was proposed for improving network performance. A ferry is a specific node that provides controllable movement and nonrandomized contact opportunities in DTNs. In conventional ferry-assisted DTNs, a ferry typically moves repeatedly along a predefined route comprising several hotspots. However, if the network environment changes (specifically, if such hotspots no longer exist), such a movement type may fail because ferry movement or ferry route definitely influences the network performance.


    This paper proposes a geographic ferry movement (GFM) scheme involving determining hotspots and designing ferry movement patterns. The GFM scheme entails using node contact history to determine hotspots dynamically. Moreover, we formulated hotspot travel scheduling problem as a Hamiltonian path problem and used classical solution in graph theory to design a route. We used the branch-and-bound algorithm and the nearest neighbor algorithm to determine a trade-off between the length of a hotspot tour and network performance.


    Finally, we observed the difference in the performance of three routing protocols according to four mobility patterns before and after 1–10 ferries joined the networks. The results revealed that the GFM scheme can be used to effectively determine hotspots and that ferries can clearly improve network performance considerably.
    显示于类别:[通訊工程研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML516检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明