中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/69330
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 42735805      在线人数 : 1400
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/69330


    题名: 二維固體有限元素之幾何非線性動力分析
    作者: 張顥;Chang,Hao
    贡献者: 土木工程學系
    关键词: 計算力學;幾何非線性;共轉座標演算法;非耦合型態;隱式Newmark-β 法;二維固體元素;computational mechanics;geometric nonlinearity;corotational formulation;uncoupled;implicit Newmark-β method;plane solid element
    日期: 2016-01-27
    上传时间: 2016-03-17 17:58:16 (UTC+8)
    出版者: 國立中央大學
    摘要: 結構分析之首要目的為決定結構體系在已知載重下所對應構件
    中之應力、應變以及位移等資料。在計算力學體系出現之前,大多將
    結構劃分為簡單之桿、梁、板、殼等不同類型之構件,透過材料力學
    及結構力學推導其受力後之力學模型,並針對複雜之力學問題進行簡
    化以便於計算。
    隨著電腦計算機之出現,眾多學者結合力學與數值運算而發展出
    了計算力學,使得力學理論於應用上更為方便且可處理之問題更為廣
    泛。其中以虛功法所推導之非線性有限元素雖可以得到可靠且精確之
    分析模擬,但推導過程往往過於複雜,且傳統有限元係以矩陣模式做
    為計算之基礎,當結構體系過於龐大且受力模式過於複雜時,往往需
    消耗過多計算時間處理矩陣運算,且矩陣運算有時受限於其數學上求
    解之奇異狀況而導致數值運算之問題。
    本研究採用一簡單之幾何非線性處理之程序,亦即搭配共轉座標
    演算法,藉由建立非耦合型態之運動方程式並搭配隱式Newmark-β
    法以求解控制方程式,且推導一系列之二維固體元素,進行數值分
    析,探討其於高度非線性分析上之能力。;The main idea of structural analysis is to determine the stress, strain and
    displacement of the system. Before the computational mechanics had
    been developed, several analysis were conducted by treating the
    structures as a series of bar, beam, plate and shell members and derived
    the simplified governing equations which were based on the mechanics of
    material and structural mechanics.
    Since the computers have been developed, mechanics finally can combine
    with the numerical analysis, the computational mechanics started to be
    widely applied and had a great effect on convenience and solving difficult
    problems. Among several numerical method, the nonlinear finite element,
    which is based on the principle of virtual work, can give more accuracy in
    the analysis, but sometimes the derivation is too complicated, also,
    traditional finite element method is of coupled matrix formulation, this
    phenomenon lead to a difficult point on solving the simultaneous
    equations if the structural system is huge enough or the mechanical
    behavior is complex, when a system contains the above problems the
    matrix calculation will waste too much time or even can make the matrix
    solution singular.
    In order to solve the problems of traditional finite element, in this study
    we consider an easy way to treat the geometric nonlinearity, that is,
    corotational formulation, also, constructing the uncoupled-type equations
    of motion and solving them by the use of implicit Newmark-β method,
    and deriving nonlinear plane solid elements as well as testing their ability
    at highly geometrically nonlinear analysis.
    显示于类别:[土木工程研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML328检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明