中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/72245
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 43454217      Online Users : 1179
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/72245


    Title: 基於慣性感測器與肌肉訊號之穿戴式裝置三維手寫身份認証;An Wearable with IMU and EMG sensors for 3D space handwritting authentication
    Authors: 歐軒慈;Ou,Hsuan-Tzu
    Contributors: 資訊工程學系
    Keywords: 慣性感應器;肌肉訊號;手環穿戴裝置;身份認証;IMU;EMG;MYO Armband;Authentication
    Date: 2016-08-18
    Issue Date: 2016-10-13 14:34:36 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 在數位化充斥著生活的現在,人們的生活幾乎已離不開電腦手機等資訊產品,在此時空下傳統的密碼金鑰等資訊認證或保密的方法,已經難以應付目前的需求。目前基於生物行為特徵,所發展出的認證方法已廣為大眾接受,此種認證方式是彌補傳統密碼金鑰易遭複製易被遺忘等缺陷的方法。


    目前可當作身份認證的生物特徵有很多,本論文以三維空中手寫簽名與肌肉訊號當作個人辨識特徵,資料獲取方式為自製慣性感應器穿戴裝置,裝置於手指部位獲取手指姿態,並使用 Thalmic labs 的 MYO Armband 取得手臂肌肉訊號與手臂姿態,利用三點定位的方式,計算三維空中手寫軌跡作為部分手寫特徵,最後使用循環神經網路訓練身份認證系統。
    ;We have lived in a digital life nowadays. We cannot live without computers, smart phone and other information products in our daily life. Those traditional confidentiality and authentication methods, for example cryptographic keys, is too old to cope with the new problems in recent years. Currently, some authentication methods based on biological behavioral characteristics have been widely accepted. Such certification procedures find a new way to help the traditional cryptographic keys which would be copied and forgotten easily.

    There are many methods for biometric characteristics. The proposed method uses handwritten signals in a 3D coordinate space and EMG signals as personal identification features. We use an IMU wearable device which is made by ourselves and equiped on fingers to get the pose signals of fingers. Then, we use MYO Armband from Thalmic labs to get EMG and Arm altitude signals and use three-points fix method to calculate handwritten trajetory as part of the features. Finally, we use recurrent neural network with LSTM to train the authentication system.
    Appears in Collections:[Graduate Institute of Computer Science and Information Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML325View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明