Abstract: | 我們要討論的是在CMO^p_b上的Calderon-Zygmund 算子有界性。令T是一個Calderon-Zygmund算子,如果Tb = 0,則M_bT在CMO^p_b上是有界的,其中p介於n/(n+(ε/2))和1之間,ε是一個關於算子T核的光滑性指數。相反地,如果M_bT在BMO_b = CMO^1_b上有界,則Tb = 0。 ;In this paper, we study the boundedness of Calderon-Zygmund operator on the Carleson measure spaces CMO^p_b associated with para-accretive function b. Let T be a Calderon-Zygmund operator. If Tb = 0, then M_bT is bounded on CMO^p_b, for n/(n+(ε/2)), where ε is the regularity exponent of the kernel of T. Conversely, if M_bT is bounded on BMO_b = CMO^1_b, then Tb = 0. |