中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/72416
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42653651      Online Users : 1294
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/72416


    Title: 模糊系統H∞靜態輸出回授控制器設計─齊次多項式尤拉法;H∞ Static Output Feedback Controller Design of Fuzzy Systems Via Homogeneous Euler′s Method
    Authors: 劉鎔維;Liu,Jung-Wei
    Contributors: 機械工程學系
    Keywords: 非二次穩定;平方和;Takagi-Sugeno模糊系統;尤拉齊次多項式定理;H∞狀態回授控制;H∞靜態輸出回授控制;non-quadratic stability;sum of squares;T-S fuzzy systems;Euler′s Theorem for Homogeneous Function;H∞ state feedback control;H∞ static output feedback control
    Date: 2016-07-28
    Issue Date: 2016-10-13 14:53:52 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本論文主要研究連續模糊系統之靜態輸出回授控制器設計,使用
    非二次李亞普諾夫函數(non-quadratic Lyapunov function) 及其對時間的變化率做為穩定的條件, 並滿足H1 性能指標。本論文分為兩個步驟設計靜態輸出回授控制器,步驟一: 求得狀態回授增益,使用二
    次李亞普諾夫函數(quadratic Lyapunov function) ,步驟二: 求解靜態輸出回授增益, 使用非二次李亞普諾夫函數(non-quadratic Lyapunov function),其中以尤拉齊次多項式定理建立非二次李亞普諾夫函數(non-quadratic Lyapunov function),其形式為
    V (x) = x′P(x)x = 1/(g(g-1))x′∇xxV (x)x。
    電腦模擬方面以平方和方法(Sum-of-Squares) 來檢驗模糊系統的
    穩定條件,並設計出狀態回授控制器以及靜態輸出回授控制器。;The main contribution in this thesis is static output feedback controller
    design of H1 continuous fuzzy system. And we can solve the inequalities derived from non-quadratic Lyapunov function and its time gradient. It’s a two-step procedure for solving output feedback control gain, step 1: solve for state feedback gain (for common P theorem), step 2: solve for static output feedback gain (for homogeneous polynomial P(x) theorem). A non-quadratic Lyapunov function derived from
    Euler’s homogeneous polynomial theorem has following form
    V (x) = x′P(x)x = 1/(g(g-1))x′∇xxV (x)x。
    In numerical simulation, we solve for state feedback gain first and then solve for static output feedback gain with sum-of-squares approach.
    Appears in Collections:[Graduate Institute of Mechanical Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML432View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明