本研究中,我們使用高分子自組裝的特性來製備具有序陣列的納米金屬粒子,透過嵌段高分子的自組裝特性,將高分子微胞包覆金屬粒子,此種方法可以避免奈米金屬顆粒的聚集現象,同時可以精確的控制元件催化劑的尺寸、形狀和分布。 實驗方面,我們將金屬粒子鉑(Pt)和鈀(Pd)奈米顆粒摻入嵌段高分子的結構當中,此手法能避免金屬粒子之間的聚集,同時藉由控制兩金屬粒子形成複合材料來增進氧化還原(ORR)的效用,Pt-Pd-C的複合材料可以減少Pt和商業用之Pt/C元件主要會遇到的問題,包含甲醇的汙染問題,此複合材料能使電子數維持在4e-的條件下,同時具有良好的起始電動勢,和電流密度。複合材料之奈米結構的製備為使用熱燒結方式將交聯後之嵌段高分子元件透過高溫爐的熱燒結,製備Pt-Pd-C的元件,結構鑑定上分別使用了多項儀器來分析微觀之有序結構,RDE、SEM、XRD、XPS等,了解這些奈米材料的化學和物理性質,為我們提供了結構和化學性質與ORR電化學性能之間的知識。 ;In this study, the self-assembled block copolymer (BCP) nanodomains have been used to synthesize arrayed nanoparticles with well-defined morphology and spatial order embedded within nanostructured carbon matrix. This approach could avoid the aggregation of metal nanoparticles and also precisely control the size, shape, and distribution of the catalyst. The incorporation of Platinum (Pt) and Palladium (Pd) nanoparticles to the BCP nanodomains could increase the activity of Oxygen Reduction Reaction (ORR). The hybrids Pt-Pd-C has a great possibility to reduce the amount of Platinum Nanocatalyst and overall Pt/C major problems including the methanol crossover. Pt-Pd-C catalyst could reach the 4e- transfer pathway with the onset overpotential -0.001V (vs. SCE) and current density 12.5(mA/cm2). The nanostructure was fabricated by thermal pyrolysis of crosslinked poly(styrene-block-4-vinylpyridine) (PS-b-P4VP). These carbon hybrids with Pt and Pt-Pd nanoparticles were obtained after crosslinking process under UV irradiation and thermal pyrolysis. Understanding the chemical and physical nature of these nanomaterials using several material characterizations instrument including Rotating Disk Electrode (RDE), Scanning Electron Microscope (SEM), Raman Spectroscopy, X-ray Photoelectron Spectroscopy (XPS), and X-ray Powder Diffraction (XRD) provides us the knowledge of relationship between the structural and chemical properties with ORR electrocatalytic performances.