中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/74566
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 43435731      線上人數 : 1232
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/74566


    題名: 抗部分遮蔽之採用交互多模型粒子濾波器的行人追蹤;Pedestrian Tracking Using Interacting Multiple Model Particle Filter for Partial Occlusion
    作者: 陳振昌;Chen, Zhen-Chang
    貢獻者: 通訊工程學系
    關鍵詞: 行人追蹤;交互多模型;粒子濾波器;特徵匹配;遮蔽;pedestrian tracking;interacting multiple model;particle filter;feature matching;occlusion
    日期: 2017-07-26
    上傳時間: 2017-10-27 14:02:11 (UTC+8)
    出版者: 國立中央大學
    摘要: 物件追蹤在電腦視覺領域被廣泛應用,其中行人追蹤在視覺監控(visual surveillance)系統裡是相當重要的,然而環境中之其他靜態或動態物件常影響行人原本的運動行為,也可能造成遮蔽,而靠近或遠離相機會造成行人在畫面裡放大或縮小。因此,本論文提出結合交互多模型粒子濾波器與SURF特徵匹配作目標偵測之物件追蹤演算法。藉由粒子濾波器的更正階段計算出各運動模型之最大色彩權重對應的狀態,更新運動模式機率(mode probability),提升運動模式機率(mode probability)的準確性。而交互多模型粒子濾波器以前一時刻的運動模式機率(mode probability),於交互多模型粒子濾波器交互階段更新混合機率,使混合後之各運動模型對應之狀態分布,更趨近於行人目前時刻的狀態之事前機率分布,進而提升預測準確率。此外,本論文參考各運動模型經粒子濾波器估測的狀態,交互多模型粒子濾波器之整體估測狀態,與以SURF特徵匹配所得之目前畫面多個匹配特徵點為中心之不同大小的候選方框區域,計算與目標樣板的色彩相似度,增加追蹤的準確率。最後利用外觀相似度判斷,進行物件的外觀模型更新,可防止目標因外觀大小改變、光線變化影響色彩相似度的判斷。實驗結果顯示,相較於交互多模型粒子濾波器,我們提出的方案, 在行人的運動行為改變, 遮蔽, 光線變化, 放大縮小的情況下,相較於以色彩為基礎之IMMPF演算法, 皆有較好的追蹤效果。;Object tracking is widely used in applications of computer vision where pedestrian tracking is important in the visual surveillance system. However, either static or dynamic objects in the environment may frequently affect the motion model of the pedestrian or lead to occlusions. Moreover, scaling is inevitable. Therefore, this paper proposes to combine interacting multiple model particle filter (IMMPF) and SURF feature matching based target detection for pedestrian tracking. The mode probability of each motion model is updated by the state with the maximum color weight of the corresponding motion model, computed by the correction stage of the particle filter. And thus, accuracy of the mode probability is improved. The mixing probability is updated by the previous mode probability in the interaction stage of IIMMPF. It increases accuracy of approximation of the mixed a priori probability distribution of the pedestrian and thus improves prediction accuracy. To improve tracking accuracy, the proposed scheme refers to the estimated state of each motion model, the overall estimated state of IMMPF, and the neighborhood with varying size of SURF matched keypoints to compute the color similarity with the target template. Finally, target appearance model is optionally updated according to the similarity of appearance model. Experimental results show that the proposed scheme outperforms the color based IMMPF algorithm.
    顯示於類別:[通訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML387檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明