中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/74647
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42693302      Online Users : 1599
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/74647


    Title: 基於麥克風陣列的語者辨識系統設計與實作;Design and Implementation of a Microphone Array Based Speaker Recognition System
    Authors: 游仁男;Yu, Jen-Nan
    Contributors: 資訊工程學系在職專班
    Keywords: 語者辨識;麥克風陣列;機率神經網路;Speaker Recognition;Microphone Array;Probabilistic Neural Network
    Date: 2017-07-24
    Issue Date: 2017-10-27 14:35:12 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 為了提升單一麥克風語者辨識系統的效能。本研究因此設計一個基於麥克風陣列的嵌入式語者辨識系統,系統分成四個模組:麥克風陣列聲音訊號擷取、波束成形、語者特徵擷取和語者辨識模組。聲音訊號模組經由微機電(MEMS)麥克風組成的環形麥克風陣列收集語者聲音資訊;波束成形模組藉由多通道聲音處理來增強語音訊號與除去周圍的雜訊;在語者特徵擷取模組,我們使用線性預測編碼倒頻譜(LPCC)來表示語者的聲音特徵模型;最後藉由機率神經網路(PNN)分類器來進行語者辨識。我們建置一個實驗的語者聲音資料庫,錄製十二人共120個相同語句的聲音資料,來驗證此一語者辨識系統,實驗過程藉由機率神經網路平滑參數與波束成形參數的訓練來最佳化辨識率。實驗結果顯示,基於麥克風陣列的語者辨識系統,相較於單一麥克風的語者辨識系統,可降低約百分之十的錯誤相等率。;The study is to design an embedded speaker identification system based on microphone array in order to improve the efficiency of single microphone identification systems. The system is composed of four modules including sound signal extraction from microphone array, beam forming, speaker features extraction and speaker identification module. Sound signal module is to collect speaker sound information by using loop microphone array composed of Micro Electro Mechanical System (MEMS) microphone; Beam forming is to enhance sound signal and remove background noise via multi-channel sound processing; Linear Predictive Cepstrum Coefficient (LPCC) is applied to represent a speaker sound characteristics module; The classifier of Probabilistic Neural Network (PNN) is applied to identify speaker. Besides, we built a database of experimental speaker sounds with one hundred and twenty same statements recorded by twelve people. This is to validate the speaker identification system. The recognition rate was optimized by PNN smoothing parameters and beam forming parameters during the training. The test results showed that our speaker identification system based on microphone array could reduce about 10% error rate compared to the single one.
    Appears in Collections:[Executive Master of Computer Science and Information Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML335View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明