English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42677992      線上人數 : 1235
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/74930


    題名: Linearization or Not. A Numerical Study of Two Solution Algorithms for Quadratic PDE Eigenvalue Problems.
    作者: 劉馥榮;Liu, Fu-Rung
    貢獻者: 數學系
    關鍵詞: 二次特徵值;特徵值;線性化;Quadratic eigenvalue problems;Jacobi-Davidson;linearization;Krylov-Schur;SLEPc
    日期: 2017-06-21
    上傳時間: 2017-10-27 16:12:21 (UTC+8)
    出版者: 國立中央大學
    摘要: 我們將有系統地研究兩種用於解二次特徵值問題(QEPs)的演算法,包含線性化方法與多項式 Jacobi-Davidson (JD) 方法。這些特徵值問題在計算科學和工程中有重要的應用,像是聲學中的噪音控制、結構工程中的穩定性分析和電子工程。在線性化方法中,QEP被線性化為伴隨的廣義特徵值問題 (GEVP),且解決了所得到的GEVP。另一方面,JD 方法是直接去找目標特徵值。我們使用一個 Matlab-based 的工具, a collection of nonlinear eigenvalue problems (NLEVP) 產生大量具有差異性值的矩陣來做數值實驗,並用 robustness, accuracy 和 efficiency 來評估效率問題。;We numerically investigate the numerical performance of two solution algorithms for the quadratic eigenvalue problems (QEP′s), namely the linearization approach and the polynomial Jacobi-Davidson method. Such eigenvalue computations play an important role and highly-demanded in many computational sciences and engineering applications, such as the noise control in the acoustical design, stability analysis in the structural engineering, and electronic engineering. In the linearization approach, the QEP is linearized as a companion generalized eigenvalue problems (GEVP′s), and then a variety of linear eigensolvers are solved the resulting GEVP′s. On the other hand, the polynomial Jacobi-Davidson method targets the eigenvalue of interests directly without any transformation. The evaluation metrics are the robustness, accuracy, and efficiency. To draw the conclusion for more general situations, we conduct intensive numerical experiments for a large number of test cases generated by a collection of Nonlinear Eigenvalue Problem (NLEPV), with a various problem size and different coefficient matrices properties.
    顯示於類別:[數學研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML302檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明