中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/75192
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42759926      Online Users : 981
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/75192


    Title: 以連續小波之光體積描記法解析心肺系統之生理耦合效應;Photoplethysmographic Derivation of Cardiorespiratory Coupling Effect Using Continuous Wavelet Transformation
    Authors: 陳政緯;Chen, Cheng-Wei
    Contributors: 光電科學與工程學系
    Keywords: 光體積描紀;小波轉換;生理耦合效應;Photoplethysmographic;Continuous Wavelet Transformation;Cardiorespiratory Coupling Effect
    Date: 2017-07-26
    Issue Date: 2017-10-27 17:18:19 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本論文利用穿透式之光體積描記法(Photoplethysmography, PPG)量測人體脈搏波形(cardiac pulse waveforms),提出一套生理訊號演算法,分析呼吸系統(respiratory system)與心肺系統(cardiopulmonary system)之生理節律(physiological rhythms)及同步生理交互作用。
    以小波轉換(Continuous Wavelet Transformation, CWT)為基礎,以其能分析即時(real time)頻譜分布(spectrum)的特性,即時監控心率(Heart Rate, HR)與心率變異度(Heart Rate Variability, HRV),證明心率高(~2Hz)與心率低(~1Hz)時分別對應到吸氣(inspiration)與吐氣(expiration)時間。利用主峰心率(peak frequency of HR)描繪心率變異波形與提取呼吸頻率(~0.1Hz);並由其權重(weighting)極大值訊號推論出呼吸波形。
    以反小波轉換(Inverse Continuous Wavelet Transformation, ICWT)能夠重建無時間延遲訊號的特性,將心跳訊號(heart beat signal)分成吸氣與吐氣時之心跳訊號,並繪出其演化圖。再由重建之呼吸波形判斷呼吸深度(depth of respiration)。最後根據心跳倍頻之反小波轉換圖,解釋呼吸頻率(~0.1Hz)造成心率以0.1Hz的拍頻疊加出心跳波形。
    ;In this thesis, we use transmitted PPG to measure human cardiac pulse waveforms. And we develop the algorithm for physiological signal to analyze the physiological rhythms and synchronized physiological interaction of cardiopulmonary system and respiratory system.
    Based on Continuous Wavelet Transformation(CWT) and the CWT characteristic of analyzing real time spectrum, instantly monitor heart rate(HR) and heart rate variability(HRV) to prove that the moment of high HR(~2Hz) and low HR(~1Hz) corresponds to inspiration and expiration, respectively. We apply peak frequency of HR to depict waveform of HRV and obtain the frequency of respiration. And pick the signal of maximum weighting to derive the waveform of respiration.
    According to the characteristic of Inverse Continuous Wavelet Transformation(ICWT), we can rebuild the signal without time delay and separate the HR signal into two parts, HR with inspiration and HR with expiration. Moreover, depict the evolution of HR waveform. Based on rebuilt waveform of respiration, determine the depth of respiration. Finally, by applying ICWT to second harmonic of HR, explain that the frequency of respiration(~0.1Hz) causes HR to form the waveforms with 0.1Hz beat frequency.
    Appears in Collections:[Graduate Institute of Optics and Photonics] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML262View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明