中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/76018
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42708366      線上人數 : 1499
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/76018


    題名: 加速碳酸鹽反應對都市垃圾焚化灰渣捕捉二氧化碳之可行性評估研究;Feasibility of Carbon Dioxide Capture by using Accelerated Carbonation of Municipal Solid Waste Incineration (MSWI) Residues
    作者: 蕭毓撰;Hsiao, Yu-Chuan
    貢獻者: 環境工程研究所
    關鍵詞: 焚化飛灰;焚化底渣;加速碳酸鹽反應;二氧化碳捕捉;MSWI fly ash;MSWI bottom ash;accelerated carbonation;carbon dioxide capture
    日期: 2018-01-26
    上傳時間: 2018-04-13 11:31:43 (UTC+8)
    出版者: 國立中央大學
    摘要: 本研究應用自行開發之半乾式旋轉窯加速碳酸鹽反應系統,探討都市垃圾焚化飛灰及底渣無害化及捕捉二氧化碳之可行性,研究分別針對二氧化碳的捕捉效率、加速碳酸鹽反應前後焚化飛灰之重金屬溶出特性、酸中和能力,以及後續水泥穩定化作業之水泥添加量之影響等進行評估。加速碳酸鹽反應系統控制條件,主要包括模擬焚化廢氣組成之二氧化碳(10 %)、二氧化硫(15及30 ppm)及反應系統的濕度(20 %及30 %)。研究結果顯示不論是焚化底渣或飛灰,控制前述之反應條件,反應均可在8小時左右,達成加速碳酸鹽礦化反應之效果(pH<9)。反應系統濕度對焚化灰渣捕捉二氧化碳效率的評估結果顯示,反應濕度較高(30 %)易造成阻塞灰渣孔隙,不利於二氧化碳於孔隙間的氣體流通性,致使二氧化碳捕捉量較反應濕度20 %為低,其中焚化飛灰及底渣對二氧化碳捕捉量分別從29.66 g/kg及77.73 g/kg降低至27.46 g/kg及66.37 g/kg。此外,焚化底渣對二氧化碳的捕捉量均較焚化飛灰為高,此係焚化底渣在反應系統之填充比較低,亦即孔隙率較高,因此,二氧化碳擴散性與底渣接觸反應的效果較佳。二氧化硫對二氧化碳捕捉量的競爭影響結果顯示,在廢氣含有較高濃度之二氧化硫(30 ppm)條件下,焚化飛灰或底渣之鈣含量將與二氧化硫反應並消耗,致使二氧化碳的捕捉量明顯降低。以10 %二氧化碳及反應濕度20 %的反應條件而言,當二氧化硫濃度從0 ppm增加至30 ppm時,焚化飛灰及底渣捕捉二氧化碳量,分別從29.66 g/kg及77.73 g/kg降低至23.79 g/kg及64.17 g/kg。
    經加速碳酸鹽反應後飛灰及底渣之環境安全性評估結果顯示,反應後之焚化飛灰及底渣,其試驗重金屬之溶出濃度,均可符合法規管制標準,其中焚化飛灰中重金屬鉛之溶出濃度,可由反應前之4.12 mg/l降低至反應後之0.16 mg/l以下,足見加速碳酸鹽反應對飛灰中重金屬鉛之溶出,具有穩定化之效果。加速碳酸鹽反應對焚化飛灰水泥穩定化作業,水泥使用減量之評估結果顯示,在達到飛灰穩定化物相同之抗壓強度標準之條件下,經碳酸鹽反應後之飛灰,其水泥使用量約可減少20 %。整體而言,本研究已成功開發一套具有加速碳酸鹽礦化的反應系統,不僅驗證焚化飛灰及底渣均具捕捉二氧化碳之應用潛力外,同時亦可有效減少飛灰穩定化作業的水泥使用量,達成資源減量、飛灰無害化及二氧化碳捕捉的多重效果。
    ;The accelerated carbonation system combined with semi-dry rotary kiln was developed and investigated the feasibility of the carbon dioxide capture and non-hazardous treatment of municipal solid waste incineration (MSWI) fly ash and bottom ash. The carbon dioxide capture efficiency, the tested metals leaching characteristics and acid neutralization capacity of MSWI fly ash and bottom ash after accelerated carbonation reaction, , and reduction in cement usage by stabilization were discussed, respectively.
    The experimental results showed that pH value of MSWI fly ash and bottom ash could significantly decrease from 12 to 9 and below by accelerated carbonation during 8 hours reaction time. It is implied MSWI fly ash and bottom ash have matched criteria of carbonation reaction. In the case of moisture content effect on carbon dioxide capture efficiency, the carbon dioxide was captured by MSWI fly ash and bottom ash were decreased from 29.66 g/kg and 77.73 g/kg to 27.46 g/kg and 66.37 g/kg with moisture content increasing from 20 % to 30 %, respectively. This is because higher moisture content of ash could tend to block the pores of fly ash resulted in decreasing diffusion of carbon dioxide. On the other hand, due to the filling ratio of MSWI bottom ash in carbonation system was lower than that of fly ash, it can have a higher porosity and good diffusion of carbon dioxide resulted in MSWI bottom ash exhibits good carbon dioxide capture efficiency than that of MSWI fly ash. The presence of sulfur dioxide (SO2) could occur a competitive reaction during accelerated carbonation process. The experimental results indicated carbon dioxide was captured by MSWI fly ash and bottom ash were decreased from 29.66 g/kg and 77.73 g/kg to 23.79 g/kg and 64.17 g/kg with sulfur dioxide concentration increasing from 0 ppm to 30 ppm, respectively. That is, the sulfur dioxide could competitively react and consume the calcium content of fly ash and/or bottom ash resulted in decreasing carbon dioxide capture efficiency.
    Based on the analysis results of environmental safety of MSWI fly ash and bottom ash by accelerated carbonation, the all tested heavy metals of carbonated fly ash and bottom ash were in compliance with current Taiwan EPA regulation thresholds. In the case of variation in Pb TCLP concentration of fly ash, it was significantly decreased from 4.12 mg/l to 0.16 mg/l and below after accelerated carbonation reaction. It could conclude that the accelerated carbonation has good potential for enhancing in Pb stabilization of MSWI fly ash. According to the results of compressive strength of stabilization product using fly ash before and after carbonation treatment, it was shown that the cement usage amounts for MSWI fly ash stabilization after carbonation could approximately reduce 20 % under controlled at the similar requirement of compressive strength of stabilization product. In summary, this research has been successfully developed and proven the performances of accelerated carbonation reaction system combined with semi-dry rotary kiln. It could have good potential for carbon dioxide sequestration, but also could reduce the cement usage amounts in MSWI fly ash stabilization. The multiple purposes of resources reduction, harmless of MSWI fly ash, and carbon dioxide sequestration by accelerated carbonation have been conducted in this research.
    顯示於類別:[環境工程研究所 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML297檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明