中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/7647
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 43211129      Online Users : 1235
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/7647


    Title: 分析二維個數資料之有母數強韌法
    Authors: 王价輝;Jie-Huei Wang
    Contributors: 統計研究所
    Date: 2006-06-08
    Issue Date: 2009-09-22 11:01:37 (UTC+8)
    Publisher: 國立中央大學圖書館
    Abstract: 在處理二維個數資料時,為了分析時的便利,多數情況下都會假設資料服從二維卜瓦松分配或二維負二項分配。但是一旦資料不是來自二維卜瓦松分配或二維負二項分配時,那麼根據二維卜瓦松分配或二維負二項分配模型所做的統計推論便是錯誤的。 本文將Royall and Tsou(2003)所提出的槪似函數修正法應用於二維個數資料之母體平均數之比率的推論上,說明所提出的二維卜瓦松實作模型和二維負二項實作模型是可以經過適當的修正而被強韌化。在大樣本時,且部分正規條件下,不論資料真正分配為何,據此強韌槪似函數可對母體平均數之比率參數做正確統計推論。 This thesis utilizes the robust likelihood technique proposed by Royall and Tsou (2003) to develop parametric robust inferences about the comparison of two dependent populations of counts. More specifically, bivariate Poisson and bivariate negative binomial models are corrected to become robust. With large samples the two adjusted likelihood functions are asymptotically legitimate for the parameter of interest, without the knowledge of the true underlying distributions. Simulations are used to demonstrate the efficacy of the proposed robust method.
    Appears in Collections:[Graduate Institute of Statistics] Electronic Thesis & Dissertation

    Files in This Item:

    File SizeFormat


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明