本研究我們開發了一種製備高質量多孔碳材料的方法,通過聚苯乙烯-b-4-乙烯基吡啶(PS-b-P4VP)嵌段共聚物(BCP)作為碳源的薄膜直接熱解。在熱解之前,通過溶劑蒸氣退火(SVA)處理自組裝的BCP奈米區域,然後進行表面重建以獲得多孔模板。我們發現,可以通過使用不同的初始形態或表面重建的溫度來調整孔徑。得到的具有相當大比表面積的多孔膜,可作為表面增強拉曼光譜(SERS)的優良基材,用於物理吸附羅丹明6G的分子傳感。在奈米結構表面含有的豐富的氮原子在促進通過化學機制產生,在拉曼增強中起關鍵作用。最重要的是,我們觀察到銀奈米粒子的加入能讓聚苯乙烯-b-4-乙烯基吡啶石墨化,且在燒結後能得到連續性的奈米結構。基於構建明確的網絡奈米結構的多孔模板的獨特結構為製造SERS基底提供了新的設計策略。;We developed a method to fabricate porous carbon materials of high quality, via direct pyrolysis of poly(styrene-b-4-vinylpyridine) (PS-b-P4VP) block copolymer (BCP) as thin films as carbon resources. Prior to pyrolysis, self-asssembled BCP nanodomains were treated by solvent vapor annealing (SVA) followed by surface reconstruction to obtain the porous template. It can be found that the pore size can be adjusted by using different initial morphologies. The resultant porous films with a considerable specific surface area serve as an excellent substrate for surface-enhanced Raman spectroscopy (SERS), coupled with fluorescence quenching, for molecular sensing of physically adsorbed Rhodamine 6G. The abundant nitrogen atoms terminating on the surface of nanostructures play a critical role in promoting a large Raman enhancement generated via a chemical mechanism. Most importantly, the observed enhancement factors show a clear dependence on the mesoscale porosity within nanostructures, indicating that the chemical enhancement can be steadily tuned with control over the interfacial areas as a function of the initial morphology. And then, we observed that inlaid silver nanoparticles enabled the polystyrene-b-4-vinylpyridine to be graphitized and that a continuous nanostructure could be obtained after sintering. The unique architecture of the porous template based on the construction of a building block of a well-defined network nanostructure provides a new design strategy for fabricating SERS substrates.