現代社會面臨能源以及環境危機,尋找乾淨的替代能源已為趨勢,太陽能因為取之無盡的太陽光照而具有最大的發展潛力,不過因為太陽能難以儲存,所以需要另尋方法儲存能量,其中一個儲存方式是將太陽能轉換成化學能,因此我們使用光觸媒接收太陽光能量後分解水產生氫氣的方式儲存太陽能。氫氣經過燃燒後只會產生能量以及水,是個乾淨無汙染的能源。 ZnIn2S4 (ZIS)是能隙值為2.4 eV的半導體可見光光觸媒,在太陽光的照射下會分解水產生氫氣。我們使用微波水熱法的方式合成ZIS光觸媒,之前的研究顯示如果將ZIS包覆在具有二氧化矽介電層外殼的金銀奈米粒子(GSNS@SiO2@ZIS)能夠藉由表面電漿效應有效地提升產氫效率,不過ZIS並不能均勻地包覆在GSNS@SiO2上,若能提升包覆的表面均質性與結晶性並且控制ZIS厚度,或許能夠更加理解影響產氫效率的因素。因為GSNS@SiO2合成不易,於是使用SiO2作為ZIS包覆的研究對象。 我們發現在純水溶液合成的SiO2@ZIS具有良好的結晶性,純乙醇合成的則是有較好的表面均質性,加入鹽酸控制在低pH值的情況下合成在兩種溶液中皆會提升結晶性,SiO2@ZIS的產氫效率隨著結晶性的增加而提升。乙醇與水的混和溶液結合了兩種溶液的優點,不過合成的SiO2@ZIS其性質卻難以詳細分析,雖然在不同比例混和溶液下合成不同層的ZIS能夠增加ZIS包覆SiO2的厚度,不能確實控制厚度以及只有外層ZIS參與分解水反應限制了重複包覆的實用性。最後我們在純乙醇溶液加入鹽酸合成SiO2@ZIS的方式達到提升表面均質以及結晶性的目的,並且能夠藉由改變ZIS前驅物的濃度控制ZIS的厚度。然而因為GSNS@SiO2與SiO2之間性質的差異,需要更長時間的研究才能將SiO2@ZIS相關的製程套用在GSNS@SiO2@ZIS上,不過也因如此我們對於使用複雜殼層結構光觸媒(GSNS@dielectirc@photocatalyst)優化太陽能產氫減少碳排放的目標又有了更進一步的發展。 ;Our society is facing growing challenges of energy and environment. In order to find clean and renewable energy resources instead of fossil fuels, many researchers worked hard and tried to find a way to solve the problem. Among these renewable energy resources, the biggest potential to develop is solar energy due to the endless of sun irradiation. To store the solar energy is another problem. One of the solutions is converting solar energy to chemical energy. So we use water-splitting photocatlyst to produce hydrogen under sun irradiation for energy storage. Hydrogen is a clean energy resource because it only produces water and energy after combustion. ZnIn2S4 (ZIS) is a visible-light-driven photocatalyst with the energy band gap of 2.4 eV. We developed a microwave-assisted hydrothermal method to generate ZIS particles. In particular, our studies showed that the gold-silver nanoshells with SiO2 shell(GSNS@SiO2) embedded in ZIS matrix exhibited a unique plasmonic-enhanced photocatalytic hydrogen production. However, the coverage and thickness of ZIS on top of GS-NS were not precisely controlled. If we improve the crystallinity and coverage of ZIS to control shell thickness of ZIS, we can find out the factor which could affect hydrogen production efficiency. Because GSNS@SiO2 is hard to synthesize, our research is focusing on SiO2 core instead of GSNS@SiO2. We found that SiO2@ZIS synthesized in pure water solution has better crystallinity, though synthesized in pure ethanol solution has better coverage. Adding HCl into both water and ethanol solution to lower pH condition would increase crystallinity, better crystallinity related to better hydrogen production efficiency. SiO2@ZIS synthesized in ethanol-water mixed solution would combine the advantage of two solutions, but the properties of the samples were too complex to analyze. Though ZIS shell could get thicker by repeating coating ZIS synthesized in different ratio of ethanol-water solution, not precisely controlling ZIS shell and only outer ZIS shell participating water-splitting reaction limited the use of repeating coating method. Finally we could increase crystallinity and coverage of SiO2@ZIS by adding HCl into pure ethanol solution, ZIS shell thickness could also be controlled by different concentration of ZIS precursor. However, due to the different properties between SiO2 core and GSNS@SiO2, it takes time to study SiO2@ZIS synthesis process applied to GSNS@SiO2. Thus, our facile procedure paves the way to generate a more complex structure GS-NS@dielectric@ photocatalyst, for optimization of solar hydrogen production.