中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/76929
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 43449014      Online Users : 1478
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/76929


    Title: Robust and High-Accessibility Ranking Method for Crowdsourced Preference Sequences;Robust and High-Accessibility Ranking Method for Crowdsourced Preference Sequences
    Authors: 阮潘英輝;Huy, Nguyen Phan Anh
    Contributors: 企業管理學系
    Keywords: 排行;靠性與高使用性;使用性與排序正確性;fuzzy c-means;accessibility;crowdranking;Robust ranking;crowdsourcing
    Date: 2018-07-27
    Issue Date: 2018-08-31 11:53:39 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 隨著社群網站與共享經濟的興起,Crowdsourcing 資料已在多個領域被廣泛使用。而經由網民提供的喜好資料以可做為產品或服務排序的基礎。但是綜合網民所提供的互相衝突且不齊全的資料獲取正確排序是相當複雜的議題。為了解決這個問題,本研究提出一個新的演算法。本方法修改與增強FCM以達到高可靠性與高使用性。為了驗證可靠性、使用性與排序正確性,本研究並包含一系列的實驗,實驗資料包含真實資料與人造資料。實驗結果顯示本研究較其他方法有較好的可靠性與使用性。而正確性也與最好的Borda Count 不分軒輊.;With the rapid development of social network and online services, crowdsourcing data
    has been used for many solutions in various fields. The preference sequences obtained
    through crowdsourcing are valuable resources for ranking. However, the aggregation of
    incomplete and inconsistent preferences is complicated. To address these challenges, this
    research proposed a novel method termed robust crowd ranking (RCR) based on a consistent
    Fuzzy C-means (CFCM) approach to increase the robustness and accessibility of aggregated
    preference sequences obtained through crowdsourcing. To verify the robustness, accessibility,
    and accuracy of RCR, comprehensive experiments were conducted using synthetic and real
    data. The simulation results validated that the RCR outperforms Borda Count, Dodgson, IRV
    and Tideman methods.
    Appears in Collections:[Graduate Institute of Business Administration] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML227View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明