中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/77366
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 43366559      Online Users : 1116
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/77366


    Title: 使用權重最小平方法之多目標資料關聯與追蹤方法作為多感測器資料融合;Multitarget Data Association and Tracking with the Weighted Least Squares Method for Multisensor Data Fusion
    Authors: 張瑀征;Chang, Yu-Cheng
    Contributors: 通訊工程學系
    Keywords: 多目標追蹤;資料關聯;資料融合
    Date: 2018-06-22
    Issue Date: 2018-08-31 14:35:35 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 無線感測器網路 (Wireless Sensor Network, WSN) 領域近年來受到越來越多的關注,由於無線感測網路擁有低成本、低頻寬、低能源耗損以及防碰撞機制,促進了許多新的應用。位置定位是其中非常重要的一環,如何提供準確的位置資訊,是近年來很熱門的研究主題。
    本篇研究是在無線感測器網路中,利用接收訊號強度 (Received Signal Strength, RSS) 技術來對目標物進行追蹤,並使用擴展型卡爾曼濾波器 (Extended Kalman Filter, EKF) 來過濾 RSS 的變化,改善移動中目標的位置估計。除此之外,傳輸環境中可能存在數個目標物或雜波干擾的問題,為了降低干擾所造成的影響,我們使用機率數據關連濾波器 (Probabilistic Data Association Filter, PDAF)、機率假設密度濾波器 (Probability Hypothesis Density Filter, PHDF)來改善此問題,各個感測器將所接收到的訊息彙整至數據融合中心 (FusionCenter, FC),再由數據融合中心計算出較佳目標物路徑軌跡。;Wireless sensor network (WSN) is an active research area that has attracted much attention in recent years. Since the sensors used in a WSN have the properties of low cost, low bandwidth, low energy consumption, and anti-collision mechanism, WSN has been found in many applications. How to know the accurate positions of mobile terminals in a WSN is an important issue.
    This thesis studies an Received Signal Strength (RSS) technique to track mobile targets in a WSN and employs the Extended Kalman Filter (EKF) for position estimation of moving targets. In addition, there are usually multiple targets and clutter interferences in the tracking environment. To reduce the impact of interferences, we consider the Probabilistic Data Association Filter (PDAF) and Probability Hypothesis Density Filter (PHDF) to improve the tracking problem. Then, a data fusion center (FC) calculates target tracks with the weighted least squares method from the messages provided by multiple sensors.
    Appears in Collections:[Graduate Institute of Communication Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML173View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明