中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/77391
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 43184542      Online Users : 771
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/77391


    Title: 加速失效模型與Cox風險迴歸模型之模型選擇以時間相依AUC及預測精準度為指標
    Authors: 張雯婷;Chang, Wen-Ting
    Contributors: 統計研究所
    Keywords: 接受者作業特徵曲線下面積;時間相依接受者作業特徵曲線下面積;事件型敏感度;動態型特異度;預測;一致性指標;Cox風險迴歸模型;加速失效模型
    Date: 2018-07-25
    Issue Date: 2018-08-31 14:36:31 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 傳統上接受者作業特徵曲線(ROC)是針對二元的分類結果進行預測,然而存活資料為結合二元設限狀態及連續存活時間的資料型態,因此若將敏感度與特異度的定義經過適當的修改後,即可將接受者作業特徵曲線應用於存活資料上。在過去文獻中,已有學者將其推廣到時間獨立共變數下配適Cox比例風險模型,並結合時間相依敏感度與特異度預測精準度。然而在部分的醫學研究中,常有資料不符合比例風險假設,因此我們建議以參數化加速失效模型取代Cox比例風險模型,結合時間相依敏感度與特異度,並以接受者作業特徵曲線下面積(AUC)及一致性指標Concordance判斷生物指標對疾病的區別能力,亦進一步擴展此方法到含有長期追蹤共變數的資料上。;Traditionally, the receiver operating characteristic curve (ROC) are used to predict the binary classification results. However, survival data are data types that combine the binary censored status and continuous survival time. Therefore, if the definition of sensitivity and specificity have been slightly modified, the ROC curve can be applied to the survival data. In the past literature, some scholars have extended it when conditioned at time-independent covariate to fit Cox proportional hazard model, and combined with time-dependent sensitivity and specificity to predict model accuracy. However, in some medical studies, there are often data that violate the proportional hazard assumption. Therefore, we recommend to replace the Cox proportional hazard model as the parametric accelerated failure time model with combining time-dependent sensitivity, specificity, and AUC. And finally use AUC and Concordance to evaluate the ability of biomarkers to discriminate diseases and further extended this method to longitudinal covariates.
    Appears in Collections:[Graduate Institute of Statistics] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML269View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明