中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/7752
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 43447578      Online Users : 1386
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/7752


    Title: 用強韌概似函數分析具相關性之二分法資料;Correlated binary data analysis using robust likelihood
    Authors: 邱詩芸;Shih-yun Ciou
    Contributors: 統計研究所
    Keywords: 強韌概似函數;相關係數;robust likelihood function;correlation
    Date: 2009-06-03
    Issue Date: 2009-09-22 11:04:09 (UTC+8)
    Publisher: 國立中央大學圖書館
    Abstract: 在各種領域中常會接觸到具有相關性的二分法資料,這些相關性可能來自於生物間的基因、環境、重複測量或是時間所造成。Royall and Tsou (2003)所提出的強韌概似函數方法,在大樣本下,使得二分法資料具有相關性或者資料並非來自二項分配時,皆能對迴歸參數做出正確的推導。 本文之目的在利用二項分配模型的修正項,得到估計群集內資料間相關性的新方法。 Correlated data are commonly encountered in many fields. The correlation may come from the genetic heredity, familial aggregation, environmental heterogeneity, or repeated measures. Royall and Tsou (2003) proposed a parametric robust likelihood technique. With large samples, the adjusted binomial likelihood is asymptotically legitimate for correlated binary data. In this work, we use the adjustment by the binomial working model and obtain a new method for estimating the correlation between data in a cluster.
    Appears in Collections:[Graduate Institute of Statistics] Electronic Thesis & Dissertation

    Files in This Item:

    File SizeFormat


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明