中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/77603
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 43386571      Online Users : 1298
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/77603


    Title: 預測冷啟動的新片熱門度;Predicting the popularity of new video for cold start problem.
    Authors: 張嘉玲;Chang, Chia-Ling
    Contributors: 資訊管理學系
    Keywords: 資料探勘;熱門度預測;冷啟動;YouTube;data mining;popularity prediction;cold start;YouTube
    Date: 2018-07-13
    Issue Date: 2018-08-31 14:49:39 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 隨著網路的普及,人們在網路上分享影片並觀看視頻,已成為人們每天都在做的事情,然而,如何在眾多影片中找到熱門的影片,成為影片管理者、廣告商、影片製造商所關心的事。過去研究在預測熱門影片,依賴過去的歷史資料來作預測,當無歷史資料時,將會面臨傳統推薦上的冷啟動問題。本研究以剛上傳的影片作為預測,找出三十六個預測變數建模,並以五個機器學習的分類演算法(類神經、貝式、支持向量機、羅吉斯回歸、決策樹)作為集成學習ENSEMBLE方法,來建立一至十週的預測模型。本研究另外針對各個屬性構面作為挑選,並探討影響影片熱門度的關鍵屬性。本研究結果顯示,本研究的預測模型,均有很好的預測能力,並且可以解決新影片上傳的冷啟動問題。;Predicting video popularity is an important task involved in managing video-sharing sites. Although many previous studies have investigated this problem, a weakness common to these studies is that their predictions rely on video access data from the past. In other words, they cannot predict the popularity of newly uploaded videos. To handle this cold start problem, this study focused on building prediction models that use only the data available at the time when a video is initially uploaded. Through supervised learning methods, this study employed prediction models to predict the popularity of videos. To further improve the overall accuracy of the prediction, we used an ensemble model to integrate these classification results to obtain the most accurate prediction. The empirical evaluation indicated that the models are effective for predicting the popularity of a video and that our model can solve the cold start problem of video popularity prediction.
    Appears in Collections:[Graduate Institute of Information Management] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML196View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明