中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/7766
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42711785      Online Users : 1410
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/7766


    Title: 非線性常微分方程式之邊界值問題的討論;Nonlinear Boundary Value Problems for Some Ordinary Differential Equations
    Authors: 李中芬;Chung-Fen Lee
    Contributors: 數學研究所
    Keywords: 非線性常微分方程式;邊界值問題;Laplacian 邊界值問題;定點定理;存在性與唯一性;ordinary differential equations;nonlinear boundary value problems;existence and uniqueness;fixed point theorem;Laplacian boundary value problems
    Date: 2002-05-17
    Issue Date: 2009-09-22 11:04:51 (UTC+8)
    Publisher: 國立中央大學圖書館
    Abstract: 在本論文中,我們將討論非線性常微分方程式之邊界值問題。在第一、二章中,我們探討下列廣義的Laplacian 邊界值問題: (g(u'))'=f(t,u(t),u'(t)), 0<t<1, u 屬於 B 其中B是一個適當的邊界條件。考慮不同的函數g與f,我們給定適當的充分條件而得到正解的存在性與唯一性。 在第三、四章中,我們考慮下列四階微分方程式之邊界 值問題: u'+rf(t,u(t))=0, 0<t<1, u 屬於 B' 其中B’是一個適當的邊界條件。利用定點定理,給定函數 的條件,我們將討論解的存在性與多重性。 In this dissertation, we will study nonlinear boundary value problems for some ordinary differential equations. In chapters 1 and 2, we study the following generalized Laplacian boundary value problems : (g(u'))'=f(t,u(t),u'(t)), 0<t<1. We establish the solution existence and uniqueness for the problem under different conditions concerning f(t,u(t),u'(t)). In chapters 3 and 4, we consider the following nonlinear fourth order boundary value problems : u'+rf(t,u(t))=0, 0<t<1. Consider different conditions concerning f(t,u(t)), we study the existence and multiplicity of solutions by using fixed point theorem.
    Appears in Collections:[Graduate Institute of Mathematics] Electronic Thesis & Dissertation

    Files in This Item:

    File SizeFormat


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明