中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/7834
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42711929      Online Users : 1436
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/7834


    Title: 數值域邊界上之線段;Line Segments of The Boundary of Numerical Range
    Authors: 陳孟遠;Meng-Yenan Cheng
    Contributors: 數學研究所
    Keywords: 數值域;numerical range
    Date: 2003-06-06
    Issue Date: 2009-09-22 11:06:40 (UTC+8)
    Publisher: 國立中央大學圖書館
    Abstract: 本論文探討一個四階方陣A,其數值域(Numerical Range)邊界上之線段的情形。對A的數值域而言,若PA是可分解的,則其邊界上線段的情形不難解決。所以我們針對PA 是不可分解的情況來推導其邊界上具有一個線段的充分必要條件。另外,具有一對平行邊的情況亦獲得解決,值得注意的是在這個情況下,數值域的邊界最多只有這兩個線段。 In this thesis, we consider the problem of characterizing the numerical ranges of 4 by 4 matrices which have line segments on its boundary. If pA is reducible, we will obtain the result what we want easily. Thus it is sufficient to consider the irreducibility of pA. In this case, we will give a sufficient and necessary condition for the numerical range of a 4 by 4 matrix with a line segment on its boundary. Moreover, we also give a criterion for the numerical range of a 4 by 4 matrix with a pair of parallel line segment on its boundary.
    Appears in Collections:[Graduate Institute of Mathematics] Electronic Thesis & Dissertation

    Files in This Item:

    File SizeFormat


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明