中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/7842
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42710769      Online Users : 1471
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/7842


    Title: 正規壓縮算子與正規延拓算子;Normal Compressions and Normal Dilations
    Authors: 李佳萍;Chia-Ping Li
    Contributors: 數學研究所
    Keywords: 正規延拓算子;正規壓縮算子;Normal Compressions;Normal Dilations
    Date: 2004-05-27
    Issue Date: 2009-09-22 11:06:53 (UTC+8)
    Publisher: 國立中央大學圖書館
    Abstract: 在此論文中,我們探討「正規壓縮算子」與「正規延拓算子」的性質。在「正規壓縮算子的數值域」(參考文獻8)中有如下的結果:『對於n+1階正規矩陣N的兩個n階正規壓縮算子A與B,A與B么正等價,若且唯若,A與B的所有特徵值都相同(包含重根)』。這篇論文的主要目地則是將上述結果推廣,並分成N是么正矩陣與N是正規矩陣兩種情形來探討。當N是么正矩陣時,A與B么正等價,若且唯若,A與B有超過半數的特徵值相同(包含重根);當N是正規矩陣時,A與B么正等價,若且唯若,A與B有n-1個特徵值相同(包含重根)。 In this thesis, we have two main results. First, we present the n-dimensional compressions of an (n+1)- dimensional unitary matrix are determined, up to unitary equivalence, by only half of their eigenvalues (counting multiplities). Second, we present the n-dimensional compressions of an (n+1)- dimensional normal matrix are determined, up to unitary equivalence, by their n-1 eigenvalues (counting multiplities).
    Appears in Collections:[Graduate Institute of Mathematics] Electronic Thesis & Dissertation

    Files in This Item:

    File SizeFormat


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明