中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/7878
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42710650      Online Users : 1511
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/7878


    Title: Diophantine approximation and the Markoff chain
    Authors: 黎右強;You-Chiang Li
    Contributors: 數學研究所
    Keywords: 馬可夫鏈;Markoff chain;Diophantine approximation
    Date: 2006-06-28
    Issue Date: 2009-09-22 11:07:55 (UTC+8)
    Publisher: 國立中央大學圖書館
    Abstract: 對於實數$xi$我們定義$||xi||$為最接近$xi$整數。我的論文主要是探討$V={liminf_{qin mathbb{N}}q|q xi |:xi in mathbb{R} setminusmathbb{Q}}.$ 這個集合。此篇論文裡面有三個重要定理,分別是Dirichlet、Hurwitz和Markoff的定理。由Dirichlet的定理我們可證得 $Vsubset[0,1]$。而由Hurwitz的定理,我們更進一步推得 $Vsubset[0,1/sqrt{5}]$,並且$1/sqrt{5}$ 將不能再更小。Markoff的定理則是一個重要的結果,他清楚的說明了集合$V$在 $(1/3, 1/sqrt{5}]$ 這個區間上分布的情形。 For raal $xi$, we define $||xi||$ be the nearest integer. We are interested in the set $V={liminf_{qin mathbb{N}}q|q xi |:xi in mathbb{R} setminusmathbb{Q}}.$ . Our main theorems are the Dirichlet's theorem, the Hurwitz's theorem and the Markoff's theorem. From Dirichlet’s theorem, we may prove that $Vsubset[0,1]$. And from Hurwitz’s theorem, we may obtain that $Vsubset[0,1/sqrt{5}]$ and $1/sqrt{5}$ cannot be improved. Markoff's theorem is an important result. He explained how $V$ distributes over the interval $(1/3, 1/sqrt{5}]$
    Appears in Collections:[Graduate Institute of Mathematics] Electronic Thesis & Dissertation

    Files in This Item:

    File SizeFormat


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明