English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42683260      線上人數 : 1507
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    NCU Institutional Repository > 理學院 > 數學系 > 研究計畫 >  Item 987654321/78819


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/78819


    題名: 應用於影像資料之信息式典型分析;Informative Canonical Correlation Analysis with Applications to Image Data
    作者: 黃世豪
    貢獻者: 國立中央大學數學系
    關鍵詞: 泛函式方法;多線性分解;維度縮減;functional-based approach;multilinear constraint;dimension reduction
    日期: 2018-12-19
    上傳時間: 2018-12-20 13:51:40 (UTC+8)
    出版者: 科技部
    摘要: 本研究之目標為檢定成對的隨機影像是否相關。由於影像資料的高維度,將影像向量化後做典型相關分析會有低檢定力或甚至無法適用的問題。在這個研究中,我們將研究在典型相關分析下保留相關性訊息的維度縮減問題。其一為先將影像資料投影到平滑函數所構成的空間中再執行典型相關分析,其二為考慮多線性結構的典型相關分析。當維度縮減的子空間捕捉到部分的相關性結構,且其維度又相對小的時候,我們設想這些典型相關分析的延伸方法可以有不錯的檢定力。 ;The goal is to test the dependency between paired random images. A simple idea is to apply the canonical correlation analysis (CCA) after reshaping images into vectors. However, the test would be very low power, even not applicable, since the dimensions of images are usually much larger than those in a typical CCA study. In this project, we will study informative dimension reduction methods for CCA to deal with the large dimension problem. One is to project the images to the subspaces spanned by smooth functions and then to apply CCA on the projected data. The second one is to apply CCA with multilinear constraints. The test power would be good when the signal captured by the subspaces is strong and the dimensions of the subspaces are relative low.
    關聯: 財團法人國家實驗研究院科技政策研究與資訊中心
    顯示於類別:[數學系] 研究計畫

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML193檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明