隨著以矽為主所開發的功率元件特性趨近物理極限,而以氮化鎵為基材所開發含鋁氮化鎵之電 晶體已被驗證可達成高速、耐高溫且高功率的要求。單晶品質的氮化鎵材料比單晶矽要困難製作,但 以有機金屬氣相沉積設備所成長之氮化鎵磊晶品質,可達成發光二極體(LED)的要求。由於高功率電 子元件之電性特性之要求較高,對於磊晶膜層中的物種濃度分布或參雜物(碳或鎂)的均勻度要求亦更 高,目前使用有機金屬氣相沉積設備所製作之高功率電子元件之良率無法達成市場之要求,所以需進 一步對反應腔體中溫度劇烈變化所產生之化學反應與物種傳輸現象進行有系統的分析。本計畫將建立 不同物種之化學反應式,以水平行星式反應腔體模型為探討主軸,擬透過數值模擬的方式,探討腔體 內物種的傳輸現象與最後在表面所形成之化合物及參雜物分布。計畫將考慮不同晶圓表面溫度與入口 流量之影響,並且針對如何減少腔壁的鎵化合物的沉積與掉落汙染等問題進行探討,以期可掌握磊晶 製程中腔體的最佳操作條件,提高元件製程的控制性。 ;Nowadays silicon semiconductor technologies are approaching their theoretical limits for power device. On the other hand, the transistor made by the aluminum gallium nitride based material has been proved to have the high-speed, high-temperature and high-power characteristics. However, the single crystal of gallium nitride is more difficult to growth than silicon one. The high quality epitaxial gallium nitride layer can be grown by using the metal-organic chemical vapor deposition (MOCVD) reactor. The MOCVD method have successful to fabricate the blue light emitting diode (LED). For the high power device, the yield of its product still cannot meet the requirement of the market due to the uniformity of composition and dopant. In this project, the horizontal reactor is considered and the numerical simulation has been employed to investigate the fluid, heat, and mass transports of the chemical species in the reactor and the distribution of chemical compound and dopants on the substrate. The method to prevent parasitic growth on the reactor wall will be proposed. The operational parameters for obtaining the better uniformity of chemical depositions and dopants on the substrate will be suggested.