中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/79183
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42734764      線上人數 : 1424
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/79183


    題名: 重力波及其在宇宙學和黑洞空間中的因果結構;Gravitational Waves and Their Causal Structure in Cosmology and Black Hole Spacetimes
    作者: 瞿怡仁
    貢獻者: 國立中央大學物理學系
    關鍵詞: 引力波;曲線時空格林函數;古典和量子場理論;Gravitational waves;Curved spacetime Green's functions;Classical and Quantum Field Theory
    日期: 2019-02-21
    上傳時間: 2019-02-21 14:59:56 (UTC+8)
    出版者: 科技部
    摘要: 受到引力波天體物理學的全新時代的啟發,由二進制黑洞合併GW150914迎來,我正在尋求開發新的理論和數學技術來計算彎曲時空引力Green的功能,以照亮引力波的因果結構(GWs) - - 即,如何清晰地區分以光速行進的GW與它們的尾部(在光錐內部傳播的部分) - 在宇宙學和黑洞空間中。這反過來又受到極端質量比驅動系統中未來基於天空引力波探測器的目標的計算GW-tail誘導的自身力量的需求的啟發。 本著同樣的精神,從緊湊的天體物理系統建模GW,我也有興趣恢復我的$(n \ geq 2) - $ body牛頓(PN)場理論為基礎的程序。這將來自場理論技術的發展;對於(半)自動化PN運動方程(EoM)的軟件開發;找到這些EoM的解決方案;尋找可以進一步測試廣義相對性的GW可觀測量,方法是二進制系統不能。 宇宙學是一個比黑洞更簡單但是非常物理的環境來研究GW的傳播。除了研究綠色相關功能之外,我還計劃研究一下,如果波浪本身的旅行足夠遠,體驗我們真實世界的擴張和不均勻性,那麼應該增加通常在漸近的閔可夫斯基背景下進行的GW形式的預測。著名的Minkowskian GW記憶如何泛化成宇宙背景? ;Inspired by the brand new era of gravitational wave astrophysics, ushered in by the binary black hole merger GW150914, I am seeking to develop novel theoretical and mathematical techniques to compute curved spacetime graviton Green's functions to illuminate the causal structure of gravitational waves (GWs) -- i.e., how to cleanly distinguish between the GWs traveling at the speed of light versus their tails, the portion that propagates inside the light cone -- in cosmological and black hole spacetimes. This, in turn, is inspired by the need to compute GW-tail-induced self-forces within Extreme-Mass-Ratio-Inspiral systems, targets of future space-based gravitational wave detectors. In the same spirit, to model GWs from compact astrophysical systems, I am also interested in resuming my $(n \geq 2)-$body post-Newtonian (PN) field theory based program. This would range from development of field theoretic techniques; to software development that would (semi-)automate the computation of the PN equations-of-motion (EoM); to finding solutions to these EoM; to seeking out GW observables that could further test General Relativity in ways that binary systems cannot. Cosmology is a simpler -- but still very physical -- context than black holes to study the propagation of GWs. In addition to the study of the relevant Green's functions, I plan to examine how predictions of GW-forms, usually performed in an asymptotically Minkowski background, should be augmented once the waves themselves travel far enough to experience the expansion and inhomogeneities of our real universe. How do the well-known Minkowskian GW memories generalize to cosmological backgrounds? What is the energy-momentum of GWs in a cosmological context? Light traveling in our inhomogeneous universe, like its GW counterpart, also develop tails -- is this phenomenon ever observable from astrophysical or cosmological sources? My GW research to date has already lead to spin-offs that I wish to further pursue. For instance, while looking at GW memory in spacetime dimensions higher than 4, I pointed out a `double copy' relationship between gravitational and Yang-Mills (YM) solutions engendered by simple point sources at the linearized level. This is reminiscent of the well-established and similar correspondence between their scattering amplitudes. Does such a relationship generalize to the full PN system in General Relativity, and what would be the YM counterpart?
    關聯: 財團法人國家實驗研究院科技政策研究與資訊中心
    顯示於類別:[物理學系] 研究計畫

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML199檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明