中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/7919
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42711041      Online Users : 1386
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/7919


    Title: 一些退化擬線性波動方程的解的性質.;The Behavior of Solutions for Some Degenerate Quasilinear Wave Equations.
    Authors: 許維文;Wei-wen Hsu
    Contributors: 數學研究所
    Keywords: 黎曼問題;退化擬線性波動方程;雙曲線型守恆律系統;Riemann problem;hyperbolic systems of conservation laws;Degenerate quasilinear wave equations
    Date: 2007-06-28
    Issue Date: 2009-09-22 11:09:05 (UTC+8)
    Publisher: 國立中央大學圖書館
    Abstract: 我們的論文主要在探討一些退化擬線性波動方程的解的性質。首先我們先探討線性退化波動方程,我們由d'Almbert formula 得到了解具有 L1-stability的性質。而在非線性的例子當中,我們由雙曲線型守恆律的 Lax method 及 Glimm method 得到了柯西黎曼問題在第一階段的估計解。並且在我們的論文當中,我們將會由一些例子,來探討退化擬線性波動方程的估計解的總變異量是否會接近無限大。 In this paper we consider the Cauchy problem of some degenerate quasilinear wave equations. We first study the behavior of solutions to the linear degenerate wave equation. We obtain the -stability of solutions for the linear case just by the d'Almbert formula. To the nonlinear degenerate case, the Lax method and Glimm method in hyperbolic systems of conservation laws are used to construct the approximate solution of Cauchy problem in the first time step. As we demonstrate in this paper, the total variation of approximate solution may go to infinity due to the degeneracy of equation. We will do the case study for the behavior of solutions for some particular case of degenerate quasilinear wave equations.
    Appears in Collections:[Graduate Institute of Mathematics] Electronic Thesis & Dissertation

    Files in This Item:

    File SizeFormat


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明